Giải bài 7 trang 89 vở thực hành Toán 8 tập 2>
Cho tam giác ABC và điểm O nằm trong tam giác. Lấy các điểm M, N, P lần lượt là trung điểm của các đoạn thẳng OA, OB, OC. Chứng minh rằng $\Delta ABC\backsim \Delta MNP$ và tìm tỉ số đồng dạng.
Đề bài
Cho tam giác ABC và điểm O nằm trong tam giác. Lấy các điểm M, N, P lần lượt là trung điểm của các đoạn thẳng OA, OB, OC. Chứng minh rằng $\Delta ABC\backsim \Delta MNP$ và tìm tỉ số đồng dạng.
Phương pháp giải - Xem chi tiết
Dựa vào tính chất của đường trung bình.
Lời giải chi tiết
Vì MN, NP, PM lần lượt là đường trung bình của các tam giác OAB, OBC, OAC nên $\frac{MN}{AB}=\frac{NP}{BC}=\frac{PN}{AC}=\frac{1}{2}$.
Do đó $\Delta ABC\backsim \Delta MNP(c.c.c)$ với tỉ số đồng dạng bằng $\frac{AB}{MN}=2$.
- Giải bài 8 trang 89 vở thực hành Toán 8 tập 2
- Giải bài 9 trang 89 vở thực hành Toán 8 tập 2
- Giải bài 6 trang 88 vở thực hành Toán 8 tập 2
- Giải bài 5 trang 88 vở thực hành Toán 8 tập 2
- Giải bài 4 trang 88 vở thực hành Toán 8 tập 2
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 8 - Kết nối tri thức - Xem ngay