Giải bài 7 trang 113 vở thực hành Toán 9 tập 2>
Cho một lục giác đều và một hình vuông cùng nội tiếp một đường tròn. Biết rằng lục giác đều có diện tích (6sqrt 3 c{m^2}), hãy tính độ dài cạnh của hình vuông đã cho.
Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - KHTN - Lịch sử và Địa lí
Đề bài
Cho một lục giác đều và một hình vuông cùng nội tiếp một đường tròn. Biết rằng lục giác đều có diện tích \(6\sqrt 3 c{m^2}\), hãy tính độ dài cạnh của hình vuông đã cho.
Phương pháp giải - Xem chi tiết
+ Lục giác đều là hợp của 6 tam giác đều cạnh a, mỗi tam giác có chiều cao \(h = \frac{{\sqrt 3 }}{2}a\).
+ Vì diện tích của lục giác đều là \(6\sqrt 3 c{m^2}\) nên ta có: \(6\sqrt 3 = 6.\frac{{ah}}{2} = \frac{{3\sqrt 3 }}{2}{a^2}\) nên tính được a.
+ Đường chéo của hình vuông bằng 2a.
+ Gọi b là độ dài cạnh của hình vuông. Theo định lí Pythagore: \({b^2} + {b^2} = {4^2} = 16\), từ đó tính được b.
Lời giải chi tiết
Lục giác đều là hợp của 6 tam giác đều cạnh a, mỗi tam giác có chiều cao \(h = \frac{{\sqrt 3 }}{2}a\). Vì diện tích của lục giác đều là \(6\sqrt 3 c{m^2}\) nên ta có: \(6\sqrt 3 = 6.\frac{{ah}}{2} = \frac{{3\sqrt 3 }}{2}{a^2}\) hay \(a = 2\left( {cm} \right)\).
Đường tròn ngoại tiếp lục giác đều này có bán kính \(R = a = 2\left( {cm} \right)\).
Do bán kính đường tròn này bằng một nửa đường chéo của hình vuông, nên hình vuông có đường chéo bằng 4cm. Gọi b là độ dài cạnh của hình vuông. Theo định lí Pythagore, ta có: \({b^2} + {b^2} = {4^2} = 16\), hay \(b = 2\sqrt 2 \left( {cm} \right)\).
- Giải bài 6 trang 113 vở thực hành Toán 9 tập 2
- Giải bài 5 trang 112 vở thực hành Toán 9 tập 2
- Giải bài 4 trang 112 vở thực hành Toán 9 tập 2
- Giải bài 3 trang 111 vở thực hành Toán 9 tập 2
- Giải bài 2 trang 111 vở thực hành Toán 9 tập 2
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay