Giải bài 7 trang 100 SGK Toán 10 tập 1 – Cánh diều>
Chứng minh: a) Nếu ABCD là hình bình hành thì
Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Cánh diều
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Đề bài
Chứng minh:
a) Nếu ABCD là hình bình hành thì \(\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {CE} = \overrightarrow {AE} \) với E là điểm bất kì.
b) Nếu I là trung điểm của đoạn thẳng AB thì \(\overrightarrow {MA} + \overrightarrow {MB} + 2\overrightarrow {IN} = 2\overrightarrow {MN} \) với M, N là hai điểm bất kì.
c) Nếu G là trọng tâm của tam giác ABC thì \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} - 3\overrightarrow {MN} = 3\overrightarrow {NG} \) với M, N là hai điểm bất kì.
Phương pháp giải - Xem chi tiết
+) Quy tắc hình bình hành: \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \) nếu ABCD là hình bình hành.
+) Nếu I là trung điểm của đoạn thẳng AB thì \(\overrightarrow {MA} + \overrightarrow {MB} = 2\overrightarrow {MI} \) với M bất kì.
+) Nếu G là trọng tâm của tam giác ABC thì với M bất kì.
Lời giải chi tiết
a) Nếu ABCD là hình bình hành thì \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \)
Với E là điểm bất kì, ta có: \(\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {CE} = \overrightarrow {AC} + \overrightarrow {CE} = \overrightarrow {AE} \)
b) Nếu I là trung điểm của đoạn thẳng AB thì \(\overrightarrow {MA} + \overrightarrow {MB} = 2\overrightarrow {MI} \).
Với hai điểm bất kì M, N ta có:
\(\overrightarrow {MA} + \overrightarrow {MB} + 2\overrightarrow {IN} = 2\overrightarrow {MI} + 2\overrightarrow {IN} = 2\left( {\overrightarrow {MI} + \overrightarrow {IN} } \right) = 2\overrightarrow {MN} .\)
c) Nếu G là trọng tâm của tam giác ABC thì \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = 3\overrightarrow {MG} \)
Với hai điểm bất kì M, N ta có:
\(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} - 3\overrightarrow {MN} = 3\overrightarrow {MG} - 3\overrightarrow {MN} = 3\left( {\overrightarrow {MG} - \overrightarrow {MN} } \right) = 3\overrightarrow {NG} \).
- Giải bài 8 trang 100 SGK Toán 10 tập 1 – Cánh diều
- Giải bài 9 trang 100 SGK Toán 10 tập 1 – Cánh diều
- Giải bài 6 trang 100 SGK Toán 10 tập 1 – Cánh diều
- Giải bài 5 trang 99 SGK Toán 10 tập 1 – Cánh diều
- Giải bài 4 trang 99 SGK Toán 10 tập 1 – Cánh diều
>> Xem thêm
Các bài khác cùng chuyên mục
- Lý thuyết Ba đường conic - SGK Toán 10 Cánh diều
- Lý thuyết Phương trình đường tròn - SGK Toán 10 Cánh diều
- Lý thuyết Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng - SGK Toán 10 Cánh diều
- Lý thuyết Phương trình đường thẳng - SGK Toán 10 Cánh diều
- Lý thuyết Biểu thức tọa độ của các phép toán vecto - SGK Toán 10 Cánh diều
- Lý thuyết Ba đường conic - SGK Toán 10 Cánh diều
- Lý thuyết Phương trình đường tròn - SGK Toán 10 Cánh diều
- Lý thuyết Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng - SGK Toán 10 Cánh diều
- Lý thuyết Phương trình đường thẳng - SGK Toán 10 Cánh diều
- Lý thuyết Biểu thức tọa độ của các phép toán vecto - SGK Toán 10 Cánh diều