Bài 65 trang 167 SBT toán 9 tập 1>
Giải bài 65 trang 167 sách bài tập toán 9. Cho hai đường tròn (O) và (O’) cắt nhau tại A và B như trên hình 77...
Đề bài
Cho hai đường tròn \((O)\) và \((O’)\) cắt nhau tại \(A\) và \(B\) như trên hình \(77.\) Biết \(OA = 15cm,\) \(O’A = 13cm,\) \(AB = 24cm.\) Tính độ dài \(OO’.\)
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức:
+) Nếu hai đường tròn cắt nhau thì hai giao điểm đối xứng với nhau qua đường nối tâm, tức là đường nối tâm là đường trung trực của dây chung.
+) Sử dụng định lí Py-ta-go: Trong tam giác vuông, bình phương cạnh huyền bằng tổng bình phương hai cạnh góc vuông.
+) Nếu \(OO' = R + r\) thì đường tròn \((O)\) và đường tròn \((O')\) tiếp xúc ngoài.
Lời giải chi tiết
Gọi \(H\) là giao điểm của \(AB\) và \(OO’.\)
Suy ra \( OO’ ⊥ AB\) tại \(H.\)
Vì \(OO’\) là đường trung trực của \(AB\) (do hai đường tròn \((O)\) và \((O’)\) cắt nhau tại \(A\) và \(B\)) nên:
\(HA = HB = \displaystyle{1 \over 2}AB \)\(= \displaystyle{1 \over 2}.24 = 12 (cm)\)
Áp dụng định lí \(Py-ta-go\) vào tam giác vuông \(AOH,\) ta có: \(AO^2=OH^2+AH^2\)
Suy ra: \( OH^2 = OA^2- AH^2 \)\(= 15^2 – 12^2 = 81\)
\(\Rightarrow OH = 9 (cm)\)
Áp dụng định lí Py-ta-go vào tam giác vuông \(AO’H,\) ta có:\(AO'^2=O'H^2+AH^2\)
Suy ra: \( O'H^2 = O'A^2- AH^2 \)\(= 13^2 – 12^2 = 25\)
\(\Rightarrow O'H = 5 (cm)\)
Vậy \(OO’ = OH + O’H \)\(= 9 + 5 = 14 (cm).\)
Loigiaihay.com
- Bài 66 trang 167 SBT toán 9 tập 1
- Bài 67 trang 167 SBT toán 9 tập 1
- Bài 68 trang 168 SBT toán 9 tập 1
- Bài 69 trang 168 SBT toán 9 tập 1
- Bài 70 trang 168 SBT toán 9 tập 1
>> Xem thêm