 Toán 10, giải toán lớp 10 kết nối tri thức với cuộc sống
                                                
                            Toán 10, giải toán lớp 10 kết nối tri thức với cuộc sống
                         Bài 18. Phương trình quy về phương trình bậc hai Toán 1..
                                                        Bài 18. Phương trình quy về phương trình bậc hai Toán 1..
                                                    Giải bài 6.22 trang 27 SGK Toán 10 – Kết nối tri thức>
(H.6.21). Gọi H là giao điểm của AB và CD và đặt x=AH. Hãy thiết lập một phương trình để tính độ dài x, từ đó tính diện tích tứ giác ABCD
Tổng hợp đề thi giữa kì 1 lớp 10 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Đề bài
Cho từ giác ABCD có \(AB \bot CD;AB = 2;BC = 13;CD = 8;DA = 5\) (H.6.21). Gọi H là giao điểm của AB và CD và đặt x=AH. Hãy thiết lập một phương trình để tính độ dài x, từ đó tính diện tích tứ giác ABCD

Phương pháp giải - Xem chi tiết
Bước 1: Tính HD,HC theo x
Bước 2: Sử dụng định lý py-ta-go cho tam giác vuông BHC
\(B{C^2} = H{B^2} + H{C^2}\)
Khi đó ta lập được phương trình \(4\sqrt {25 - {x^2}} = - x + 19\)
Bước 3: Giải phương trình trên ta tìm được x
Lời giải chi tiết
Ta có :AH=x (x>0)
Xét tam giác AHD vuông ở H, ta có:
\(A{D^2} = A{H^2} + H{D^2} \Leftrightarrow H{D^2} = A{D^2} - A{H^2} = 25 - {x^2}\)
\( \Rightarrow HD = \sqrt {25 - {x^2}} \)
Ta có: \(HC = HD + DC = \sqrt {25 - {x^2}} + 8\)
\(HB = AH + AB = x + 2\)
Xét tam giác HBC vuông tại H, ta có:
\(\begin{array}{l}B{C^2} = H{B^2} + H{C^2}\\ \Leftrightarrow {13^2} = {(x + 2)^2} + {\left( {\sqrt {25 - {x^2}} + 8} \right)^2}\\ \Leftrightarrow 169 = {x^2} + 4x + 4 + 25 - {x^2} + 16\sqrt {25 - {x^2}} + 64\\ \Leftrightarrow 16\sqrt {25 - {x^2}} = - 4x + 76\\ \Leftrightarrow 4\sqrt {25 - {x^2}} = - x + 19\end{array}\)
Bình phương hai vế của phương trình trên ta được:
\(\begin{array}{l}16(25 - {x^2}) = {x^2} - 38x + 361\\ \Leftrightarrow 17{x^2} - 38x - 39 = 0\end{array}\)
\( \Leftrightarrow x = 3\) hoặc \(x = \frac{{ - 13}}{{17}}\)
Thay lần lượt các giá trị trên vào phương trình, ta thấy hai giá trị đều thỏa mãn
Do x>0 nên ta chọn x=3 => AH=3
\(\begin{array}{l}HD = \sqrt {25 - {3^2}} = 4\\HC = 4 + 8 = 12\\HB = 3 + 2 = 5\end{array}\)
Diện tích tam giác HAD là \({S_1} = \frac{1}{2}.HA.HD = \frac{1}{2}.3.4 = 6\)
Diện tích tam giác HBC là \({S_2} = \frac{1}{2}.HB.HC = \frac{1}{2}.5.12 = 30\)
Vậy diện tích tứ giác ABCD là \(S = {S_2} - {S_1} = 30 - 6 = 24\)
 
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ- Giải bài 6.23 trang 27 SGK Toán 10 – Kết nối tri thức
- Giải bài 6.21 trang 27 SGK Toán 10 – Kết nối tri thức
- Giải bài 6.20 trang 27 SGK Toán 10 – Kết nối tri thức
- Giải mục 2 trang 25, 26 SGK Toán 10 tập 2 - Kết nối tri thức
- Giải mục 1 trang 25 SGK Toán 10 tập 2 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức
 
                 
                 
                                     
                                     
        
 
                                            




 
             
            