 Toán 10, giải toán lớp 10 kết nối tri thức với cuộc sống
                                                
                            Toán 10, giải toán lớp 10 kết nối tri thức với cuộc sống
                         Bài 17. Dấu của tam thức bậc hai Toán 10 Kết nối tri thức
                                                        Bài 17. Dấu của tam thức bậc hai Toán 10 Kết nối tri thức
                                                    Giải bài 6.17 trang 24 SGK Toán 10 – Kết nối tri thức>
Tìm các giá trị của tham số m để tam thức bậc hai sau dương với mọi
Tổng hợp đề thi giữa kì 1 lớp 10 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Đề bài
Tìm các giá trị của tham số m để tam thức bậc hai sau dương với mọi \(x \in \mathbb{R}\):
\({x^2} + (m + 1)x + 2m + 3\)
Phương pháp giải - Xem chi tiết
Để tam thức bậc hai \(a{x^2} + bx + c > 0\)với mọi \(x \in \mathbb{R}\) thì:
a>0 và \(\Delta < 0\)
Lời giải chi tiết
Để tam thức bậc hai \({x^2} + (m + 1)x + 2m + 3 > 0\)với mọi \(x \in \mathbb{R}\)
Ta có: a = 1 >0 nên \(\Delta < 0\)
\(\begin{array}{l} \Leftrightarrow {(m + 1)^2} - 4.(2m + 3) < 0\\ \Leftrightarrow {m^2} + 2m + 1 - 8m - 12 < 0\\ \Leftrightarrow {m^2} - 6m - 11 < 0\end{array}\)
Tam thức \(f(m) = {m^2} - 6m - 11\) có \(\Delta ' = 20 > 0\) nên f(x) có 2 nghiệm phân biệt \({m_1} = 3+\sqrt{20}; {m_2} = 3-\sqrt{20}\)
Khi đó
\( 3-2\sqrt{5} < m < 3+2\sqrt{5}\)
Vậy \( 3-2\sqrt{5} < m < 3+2\sqrt{5}\)
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ- Giải bài 6.18 trang 24 SGK Toán 10 – Kết nối tri thức
- Giải bài 6.19 trang 24 SGK Toán 10 – Kết nối tri thức
- Giải bài 6.16 trang 24 SGK Toán 10 – Kết nối tri thức
- Giải bài 6.15 trang 24 SGK Toán 10 – Kết nối tri thức
- Giải mục 2 trang 22, 23 SGK Toán 10 tập 2 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức
 
                 
                 
                                     
                                     
        
 
                                            




 
             
            