Giải bài 6 trang 94 sách bài tập toán 11 - Chân trời sáng tạo tập 1>
Từ một tam giác đều có diện tích bằng 1, ta thực hiện lần lượt các bước như sau: Bước 1: Nối trung điểm các cạnh của tam giác đã cho, chia tam giác này thành 4 tam giác nhỏ và bỏ đi tam giác ở giữa (bỏ đi 1 tam giác có diện tích \(\frac{1}{4}\)). Bước 2: Làm tương tự bước 1 với mỗi tam giác trong 3 tam giác còn lại (bỏ đi 3 tam giác, mỗi tam giác có diện tích \(\frac{1}{{{4^2}}}\)) Cứ tiếp tục quá trình như vậy (ở bước thứ n, bỏ đi \({3^{n - 1}}\) tam giác, mỗi tam giác có diện tích \(\frac{1
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
Đề bài
Từ một tam giác đều có diện tích bằng 1, ta thực hiện lần lượt các bước như sau:
Bước 1: Nối trung điểm các cạnh của tam giác đã cho, chia tam giác này thành 4 tam giác nhỏ và bỏ đi tam giác ở giữa (bỏ đi 1 tam giác có diện tích \(\frac{1}{4}\)).
Bước 2: Làm tương tự bước 1 với mỗi tam giác trong 3 tam giác còn lại (bỏ đi 3 tam giác, mỗi tam giác có diện tích \(\frac{1}{{{4^2}}}\))
Cứ tiếp tục quá trình như vậy (ở bước thứ n, bỏ đi \({3^{n - 1}}\) tam giác, mỗi tam giác có diện tích \(\frac{1}{{{4^n}}}\)). Tính tổng diện tích các tam giác đã bỏ đi.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về tổng của cấp số nhân lùi vô hạn để tính: Cấp số nhân vô hạn \(\left( {{u_n}} \right)\) có công bội q thỏa mãn \(\left| q \right| < 1\) được gọi là cấp số nhân lùi vô hạn. Cấp số nhân lùi vô hạn này có tổng là: \(S = {u_1} + {u_2} + ... + {u_n} + ... = \frac{{{u_1}}}{{1 - q}}\)
Lời giải chi tiết
Tổng diện tích các tam giác đã bỏ đi là:
\(S = \frac{1}{4} + 3.{\left( {\frac{1}{4}} \right)^2} + {3^2}.{\left( {\frac{1}{4}} \right)^3} + ... + {3^n}{\left( {\frac{1}{4}} \right)^{n + 1}} + ... = \frac{1}{4} + \frac{1}{4}.\frac{3}{4} + \frac{1}{4}.{\left( {\frac{3}{4}} \right)^2} + ... + \frac{1}{4}.{\left( {\frac{3}{4}} \right)^n} + ...\)
Tổng trên là tổng của các số hạng lập thành một cấp số nhân lùi vô hạn với số hạng đầu \({u_1} = \frac{1}{4}\), công bội \(q = \frac{3}{4}\). Do đó, \(S = \frac{1}{4}.\frac{1}{{1 - \frac{3}{4}}} = 1\).


- Giải bài 7 trang 94 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 8 trang 94 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 9 trang 95 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 10 trang 95 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 11 trang 95 sách bài tập toán 11 - Chân trời sáng tạo tập 1
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Giải bài 5 trang 162 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 4 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 3 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 2 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 1 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 5 trang 162 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 4 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 3 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 2 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 1 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1