Giải bài 6 trang 65 sách bài tập toán 8 - Chân trời sáng tạo


Cho hình bình hành ABCD. Vẽ hình bình hành AECF \(\left( {E \in AB,F \in CD} \right)\). Chứng minh rằng ba đường thẳng EF, AC, BD đồng quy.

Đề bài

Cho hình bình hành ABCD. Vẽ hình bình hành AECF \(\left( {E \in AB,F \in CD} \right)\). Chứng minh rằng ba đường thẳng EF, AC, BD đồng quy.

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về tính chất hình bình hành để chứng minh: Hình bình hành có hai đường chéo cắt nhau tại trung điểm của mỗi đường.

Lời giải chi tiết

Gọi O là giao điểm của AC và BD.

Vì ABCD là hình bình hành nên O là trung điểm của AC và BD (1)

Vì AECF là hình bình hành nên hai đường chéo AC, EF cắt nhau tại trung điểm O của AC. Do đó, O là trung điểm của EF (2)

Từ (1), (2) ta có: Ba đường thẳng EF, AC, BD đồng quy tại O.


Bình chọn:
3.6 trên 5 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí