Giải bài 6 trang 65 sách bài tập toán 8 - Chân trời sáng tạo>
Cho hình bình hành ABCD. Vẽ hình bình hành AECF \(\left( {E \in AB,F \in CD} \right)\). Chứng minh rằng ba đường thẳng EF, AC, BD đồng quy.
Đề bài
Cho hình bình hành ABCD. Vẽ hình bình hành AECF \(\left( {E \in AB,F \in CD} \right)\). Chứng minh rằng ba đường thẳng EF, AC, BD đồng quy.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về tính chất hình bình hành để chứng minh: Hình bình hành có hai đường chéo cắt nhau tại trung điểm của mỗi đường.
Lời giải chi tiết
Gọi O là giao điểm của AC và BD.
Vì ABCD là hình bình hành nên O là trung điểm của AC và BD (1)
Vì AECF là hình bình hành nên hai đường chéo AC, EF cắt nhau tại trung điểm O của AC. Do đó, O là trung điểm của EF (2)
Từ (1), (2) ta có: Ba đường thẳng EF, AC, BD đồng quy tại O.
- Giải bài 7 trang 65 sách bài tập toán 8 - Chân trời sáng tạo
- Giải bài 8 trang 65 sách bài tập toán 8 - Chân trời sáng tạo
- Giải bài 5 trang 65 sách bài tập toán 8 - Chân trời sáng tạo
- Giải bài 4 trang 65 sách bài tập toán 8 - Chân trời sáng tạo
- Giải bài 3 trang 65 sách bài tập toán 8 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 8 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Giải bài 13 trang 94 sách bài tập toán 8 - Chân trời sáng tạo tập 2
- Giải bài 12 trang 93 sách bài tập toán 8 - Chân trời sáng tạo tập 2
- Giải bài 11 trang 93 sách bài tập toán 8 - Chân trời sáng tạo tập 2
- Giải bài 10 trang 93 sách bài tập toán 8 - Chân trời sáng tạo tập 2
- Giải bài 9 trang 93 sách bài tập toán 8 - Chân trời sáng tạo tập 2
- Giải bài 13 trang 94 sách bài tập toán 8 - Chân trời sáng tạo tập 2
- Giải bài 12 trang 93 sách bài tập toán 8 - Chân trời sáng tạo tập 2
- Giải bài 11 trang 93 sách bài tập toán 8 - Chân trời sáng tạo tập 2
- Giải bài 10 trang 93 sách bài tập toán 8 - Chân trời sáng tạo tập 2
- Giải bài 9 trang 93 sách bài tập toán 8 - Chân trời sáng tạo tập 2