Giải bài 6 trang 103 SGK Toán 10 tập 1 – Chân trời sáng tạo>
Cho |a +b| = 0. So sánh độ dài, phương và hướng của hai vectơ a và b.
Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Đề bài
Cho \(\left| {\overrightarrow a + \overrightarrow b } \right| = 0\). So sánh độ dài, phương và hướng của hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \).
Lời giải chi tiết
\(\left| {\overrightarrow a + \overrightarrow b } \right| = 0 \Leftrightarrow \overrightarrow a + \overrightarrow b = \overrightarrow 0 \Leftrightarrow \overrightarrow a = - \overrightarrow b \)
\(\overrightarrow a = - \overrightarrow b \) suy ra hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) là hai vecto đối nhau nên chúng cùng phương, ngược hướng và có độ dài bằng nhau.
- Giải bài 7 trang 103 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 8 trang 103 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 9 trang 103 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 10 trang 103 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 11 trang 103 SGK Toán 10 tập 1 – Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Ba đường conic trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Đường tròn trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Đường thẳng trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Tọa độ của vecto - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Nhị thức Newton - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Ba đường conic trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Đường tròn trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Đường thẳng trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Tọa độ của vecto - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Nhị thức Newton - SGK Toán 10 Chân trời sáng tạo