Giải bài 6 trang 10 vở thực hành Toán 8>
Thu gọn rồi tính giá trị của đa thức:
Đề bài
Thu gọn rồi tính giá trị của đa thức:
\(M = \frac{1}{3}{x^2}y + x{y^2} - xy + \frac{1}{2}x{y^2} - 5xy - \frac{1}{3}{x^2}y\) tại \(x = 0,5\) và \(y = 1\) .
Phương pháp giải - Xem chi tiết
Sử dụng quy tắc cộng (trừ) các đơn thức đồng dạng để thu gọn đa thức.
Thay giá trị x, y vào đa thức để tính giá trị của đa thức.
Lời giải chi tiết
Thu gọn:
\(\begin{array}{l}M = \frac{1}{3}{x^2}y + x{y^2} - xy + \frac{1}{2}x{y^2} - 5xy - \frac{1}{3}{x^2}y\\ = \left( {\frac{1}{3} - \frac{1}{3}} \right){x^2}y + \left( {1 + \frac{1}{2}} \right)x{y^2} + \left( { - 1 - 5} \right)xy\\ = \frac{3}{2}x{y^2} - 6xy\end{array}\)
Tính giá trị: Tại \(x = 0,5\) và \(y = 1\) , ta có
\(M = \frac{3}{2}0,{5.1^2} - 6.0,5.1 = - \frac{9}{4}\) .
- Giải bài 7 trang 10 vở thực hành Toán 8
- Giải bài 8 trang 10 vở thực hành Toán 8
- Giải bài 5 trang 10 vở thực hành Toán 8
- Giải bài 4 trang 9 vở thực hành Toán 8
- Giải bài 3 trang 9 vở thực hành Toán 8
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 8 - Kết nối tri thức - Xem ngay