Giải bài 56 trang 100 SBT toán 10 - Cánh diều>
Cho tam giác ABC. Lấy các điểm A', B', C' không trùng với đỉnh của tam giác và
Đề bài
Cho tam giác ABC. Lấy các điểm A', B', C' không trùng với đỉnh của tam giác và
lần lượt thuộc các cạnh AB, BC, CA thoả mãn \(\frac{{AA'}}{{AB}} = \frac{{BB'}}{{BC}} = \frac{{CC'}}{{CA}}\). Chứng minh hai tam giác ABC và A'B'C' có cùng trọng tâm.
Phương pháp giải - Xem chi tiết
Bước 1: Gọi G là trọng tâm tam giác ABC, G’ là trọng tâm tam giác A’B’C’. Biến đổi biểu thức \(\overrightarrow {AA'} + \overrightarrow {BB'} + \overrightarrow {CC'} \) sao cho xuất hiện vectơ \(\overrightarrow {GG'} \) (sử dụng các quy tắc vectơ)
Bước 2: Sử dụng giả thiết \(\frac{{AA'}}{{AB}} = \frac{{BB'}}{{BC}} = \frac{{CC'}}{{CA}}\)biểu diễn các vectơ \(\overrightarrow {AA'} ,\overrightarrow {BB'} ,\overrightarrow {CC'} \) theo \(\overrightarrow {AB} ,\overrightarrow {BC} ,\overrightarrow {CA} \)
Bước 3: Chứng minh \(\overrightarrow {GG'} = \overrightarrow 0 \) rồi kết luận
Lời giải chi tiết
Gọi G là trọng tâm tam giác ABC, G’ là trọng tâm tam giác A’B’C’.
Khi đó \(\left\{ \begin{array}{l}\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \\\overrightarrow {GA'} + \overrightarrow {GB'} + \overrightarrow {GC'} = \overrightarrow 0 \end{array} \right.\)
Xét \(\overrightarrow {AA'} + \overrightarrow {BB'} + \overrightarrow {CC'} = \overrightarrow {AG} + \overrightarrow {GG'} + \overrightarrow {G'A'} + \overrightarrow {BG} + \overrightarrow {GG'} + \overrightarrow {G'B'} + \overrightarrow {CG} + \overrightarrow {GG'} + \overrightarrow {G'C'} \)
\( = \left( {\overrightarrow {AG} + \overrightarrow {BG} + \overrightarrow {CG} } \right) + \left( {\overrightarrow {GA'} + \overrightarrow {GB'} + \overrightarrow {GC'} } \right) + 3\overrightarrow {GG'} = 3\overrightarrow {GG'} \) (1)
Mặt khác, đặt \(\frac{{AA'}}{{AB}} = \frac{{BB'}}{{BC}} = \frac{{CC'}}{{CA}} = k \Rightarrow \left\{ \begin{array}{l}AA' = kAB\\BB' = kBC\\CC' = kCA\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\overrightarrow {AA'} = k\overrightarrow {AB} \\\overrightarrow {BB'} = k\overrightarrow {BC} \\\overrightarrow {CC'} = k\overrightarrow {CA} \end{array} \right.\) (2)
Từ (1) và (2) suy ra \(3\overrightarrow {GG'} = k\overrightarrow {AB} + k\overrightarrow {BC} + k\overrightarrow {CA} = k\left( {\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CA} } \right) = \overrightarrow 0 \) \( \Rightarrow \overrightarrow {GG'} = \overrightarrow 0 \)
Do đó G và G’ trùng nhau. Vậy hai tam giác ABC và A'B'C' có cùng trọng tâm.
- Giải bài 55 trang 100 SBT toán 10 - Cánh diều
- Giải bài 54 trang 100 SBT toán 10 - Cánh diều
- Giải bài 53 trang 100 SBT toán 10 - Cánh diều
- Giải bài 52 trang 100 SBT toán 10 - Cánh diều
- Giải bài 51 trang 99 SBT toán 10 - Cánh diều
>> Xem thêm