Giải bài 5 trang 107 sách bài tập toán 9 - Cánh diều tập 2


Cho ngũ giác ABCDE. Chứng minh: AC + AD + BD + BE + EC > AB + BC + CD + DE + EA.

Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Cánh diều

Toán - Văn - Anh - KHTN - Lịch sử và Địa lí

Đề bài

Cho ngũ giác ABCDE. Chứng minh:

AC + AD + BD + BE + EC > AB + BC + CD + DE + EA.

Phương pháp giải - Xem chi tiết

Áp dụng bất đẳng thức trong tam giác là một định lý phát biểu rằng trong một tam giác, chiều dài của một cạnh phải nhỏ hơn tổng, nhưng lớn hơn hiệu của hai cạnh còn lại.

Lời giải chi tiết

AF + FE > AE (trong tam giác AEF);

AJ + JB > AB (trong tam giác ABJ);

BI + IC > BC (trong tam giác BCI);

CH + HD > CD (trong tam giác CDH);

GE + GD > ED (trong tam giác GDE).

Do đó, ta có:

AF + FE + AJ + JB + BI + IC + CH + HD + GE + GD > AE + AB + BC + CD + ED. (1)

Mặt khác:

(AF + GD) + (JB + FE) + (AJ + IC) + (BI + HD)  + (EG + CH) < AD + BE + AC + BD + EC. 

Hay AF + FE + AJ + JB + BI + IC + CH + HD + GE + GD < AB + BC + CD + DE + EA. (2)

Từ (1) và (2) suy ra:

AC + AD + BD + BE + EC > AB + BC + CD + DE + EA.


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Cánh diều - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí