Giải bài 4 trang 62 SGK Toán 8 – Chân trời sáng tạo>
Chứng minh rằng tam giác (ABC) vuông trong các trường hợp sau:
Đề bài
Chứng minh rằng tam giác \(ABC\) vuông trong các trường hợp sau:
a) \(AB = 8\)cm, \(AC = 15\)cm, \(BC = 17\)cm
b) \(AB = 29\)cm, \(AC = 21\)cm, \(BC = 20\)cm
c) \(AB = 12\)cm, \(AC = 37\), \(BC = 35\)cm
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Sử dụng định lý Pythagore đảo
Lời giải chi tiết
a) Ta có: \({8^2} + {15^2} = {17^2}\) suy ra \(A{B^2} + A{C^2} = B{C^2}\). Vậy tam giác \(ABC\) vuông tại \(A\)
b) Ta có: \({20^2} + {21^2} = {29^2}\) suy ra \(B{C^2} + A{C^2} = A{B^2}\). Vậy tam giác \(ABC\) vuông tại \(C\)
c) Ta có: \({12^2} + {35^2} = {37^2}\) suy ra \(A{B^2} + B{C^2} = A{C^2}\). Vậy tam giác \(ABC\) vuông tại \(B\)
- Giải bài 5 trang 62 SGK Toán 8 – Chân trời sáng tạo
- Giải bài 6 trang 62 SGK Toán 8 – Chân trời sáng tạo
- Giải bài 3 trang 62 SGK Toán 8 – Chân trời sáng tạo
- Giải bài 2 trang 62 SGK Toán 8 – Chân trời sáng tạo
- Giải bài 1 trang 61 SGK Toán 8 – Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 8 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Xác suất lí thuyết và xác suất thực nghiệm SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Mô tả xác suất bằng tỉ số SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Hai hình đồng dạng SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Các trường hợp đồng dạng của hai tam giác vuông SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Các trường hợp đồng dạng của hai tam giác SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Xác suất lí thuyết và xác suất thực nghiệm SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Mô tả xác suất bằng tỉ số SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Hai hình đồng dạng SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Các trường hợp đồng dạng của hai tam giác vuông SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Các trường hợp đồng dạng của hai tam giác SGK Toán 8 - Chân trời sáng tạo