Giải bài 3 trang 53 vở thực hành Toán 7 tập 2


Tìm giá trị của m sao cho đa thức (Gleft( x right) = {x^2} + mx - 3) có nghiệm (x = 1).

Đề bài

Tìm giá trị của m sao cho đa thức \(G\left( x \right) = {x^2} + mx - 3\) có nghiệm \(x = 1\).

Phương pháp giải - Xem chi tiết

Nếu tại \(x = a\) (a là một số), giá trị của một đa thức bằng 0 thì ta gọi a (hay \(x = a\)) là một nghiệm của đa thức đó.

Lời giải chi tiết

Đa thức \(G\left( x \right) = {x^2} + mx - 3\) có nghiệm \(x = 1\) có nghĩa là \(G\left( 1 \right) = 1 + m - 3 = 0\). Từ đó suy ra \(m = 2\).

Ngược lại, nếu \(m = 2\) thì ta có \(G\left( x \right) = {x^2} + 2x - 3\). Lúc này \(G\left( 1 \right) = 1 + 2 - 3 = 0\). Do đó, \(x = 1\) là một nghiệm của G(x).

Vậy giá trị cần tìm của m là \(m = 2\).


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 4 (7.44) trang 53, 54 vở thực hành Toán 7 tập 2

    Cho đa thức (A = {x^4} + {x^3} - 2x - 2). a) Tìm đa thức B sao cho (A + B = {x^3} + 3x + 1). b) Tìm đa thức C sao cho (A - C = {x^5}). c) Tìm đa thức D sao cho (D = left( {2{x^2} - 3} right).A). d) Tìm đa thức P sao cho (A = left( {x + 1} right).P). e) Có hay không một đa thức Q sao cho (A = left( {{x^2} + 1} right).Q)?

  • Giải bài 5 (7.45) trang 54 vở thực hành Toán 7 tập 2

    Cho đa thức P(x). Giải thích tại sao nếu có đa thức Q(x) sao cho (Pleft( x right) = left( {x - 3} right).Qleft( x right)) (tức là P(x) chia hết cho (x - 3)) thì (x = 3) là một nghiệm của P(x).

  • Giải bài 6 trang 54 vở thực hành Toán 7 tập 2

    Áp dụng Bài 5, chứng tỏ rằng (x = 3) là một nghiệm của đa thức (3{x^3} - 14{x^2} + 17x - 6).

  • Giải bài 7 trang 54, 55 vở thực hành Toán 7 tập 2

    a) Tìm đa thức A, biết rằng (left( {4{x^2} + 9} right).A = 16{x^4} - 81). b) Tìm đa thức M sao cho (left( {27{x^3} + 8} right):M = 3x + 2).

  • Giải bài 8 (7.46) trang 55 vở thực hành Toán 7 tập 2

    Hai bạn Tròn và Vuông tranh luận như sau: Vuông: Đa thức (Mleft( x right) = {x^3} + 1) có thể viết được thành tổng của hai đa thức bậc 2. Tròn: Không thể như thế được. Nhưng M(x) có thể viết được thành tổng của hai đa thức bậc bốn. Hãy cho biết ý kiến của em và nêu một ví dụ minh họa.

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 7 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí