Giải bài 3 trang 48 SGK Toán 8 tập 1 - Cánh diều>
Tính một cách hợp lí:
Đề bài
Tính một cách hợp lí:
\(a)\dfrac{{{x^2} - 49}}{{{x^2} + 5}}.\left( {\dfrac{{{x^2} + 5}}{{x - 7}} - \dfrac{{{x^2} + 5}}{{x + 7}}} \right)\)
\(b)\dfrac{{19{\rm{x}} + 8}}{{x + 1975}}.\dfrac{{2000 - x}}{{x + 1945}} + \dfrac{{19{\rm{x}} + 8}}{{x + 1975}}.\dfrac{{2{\rm{x}} - 25}}{{x + 1945}}\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Vận dụng các tính chất của phép nhân phân thức đại số để tính toán một cách hợp lí.
Lời giải chi tiết
\(\begin{array}{l}a)\dfrac{{{x^2} - 49}}{{{x^2} + 5}}.\left( {\dfrac{{{x^2} + 5}}{{x - 7}} - \dfrac{{{x^2} + 5}}{{x + 7}}} \right)\\ = \dfrac{{\left( {x - 7} \right)\left( {x + 7} \right)}}{{{x^2} + 5}}.\dfrac{{{x^2} + 5}}{{x - 7}} - \dfrac{{\left( {x - 7} \right)\left( {x + 7} \right)}}{{{x^2} + 5}}.\dfrac{{{x^2} + 5}}{{x + 7}}\\ = x + 7 - \left( {x - 7} \right) = 14\end{array}\)
\(\begin{array}{l}b)\dfrac{{19{\rm{x}} + 8}}{{x + 1975}}.\dfrac{{2000 - x}}{{x + 1945}} + \dfrac{{19{\rm{x}} + 8}}{{x + 1975}}.\dfrac{{2{\rm{x}} - 25}}{{x + 1945}}\\ = \dfrac{{19{\rm{x}} + 8}}{{x + 1975}}.\left( {\dfrac{{2000 - x}}{{x + 1945}} + \dfrac{{2{\rm{x}} - 25}}{{x + 1945}}} \right)\\ = \dfrac{{19{\rm{x}} + 8}}{{x + 1975}}.\dfrac{{2000 - x + 2{\rm{x}} - 25}}{{x + 1945}}\\ = \dfrac{{19{\rm{x}} + 8}}{{x + 1975}}.\dfrac{{x + 1975}}{{x + 1945}} = \dfrac{{19{\rm{x}} + 8}}{{x + 1945}}\end{array}\)
- Giải bài 4 trang 48 SGK Toán 8 tập 1 - Cánh diều
- Giải bài 5 trang 48 SGK Toán 8 tập 1 - Cánh diều
- Giải bài 6 trang 48 SGK Toán 8 tập 1 - Cánh diều
- Giải bài 2 trang 48 SGK Toán 8 tập 1 - Cánh diều
- Giải bài 1 trang 47 SGK Toán 8 tập 1 - Cánh diều
>> Xem thêm
Các bài khác cùng chuyên mục