Giải bài 3 trang 158 sách bài tập toán 11 - Chân trời sáng tạo tập 1


Thâm niên công tác của các công nhân hai nhà máy A và B. a) Hãy so sánh thâm niên công tác của nhân viên hai nhà máy theo số trung bình và trung vị. b) Hãy ước lượng tứ phân vị thứ nhất và thứ ba của hai mẫu số liệu ghép nhóm trên.

Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Thâm niên công tác của các công nhân hai nhà máy A và B.

a) Hãy so sánh thâm niên công tác của nhân viên hai nhà máy theo số trung bình và trung vị.

b) Hãy ước lượng tứ phân vị thứ nhất và thứ ba của hai mẫu số liệu ghép nhóm trên.

Phương pháp giải - Xem chi tiết

a) Sử dụng kiến thức về số trung bình của mẫu số liệu để tính:

Giả sử mẫu số được cho dưới dạng bảng tần số ghép nhóm:

Số trung bình của mẫu số liệu ghép nhóm, kí hiệu \(\overline x \), được tính như sau: \(\overline x  = \frac{{{n_1}{c_1} + {n_2}{c_2} + ... + {n_k}{c_k}}}{n}\), trong đó \(n = {n_1} + {n_2} + ... + {n_k}\).

b) + Sử dụng kiến thức xác định trung vị của mẫu số liệu ghép nhóm để tính:

Gọi n là cỡ mẫu.

Giả sử nhóm \(\left[ {{u_m};{u_{m + 1}}} \right)\) chứa trung vị, \({n_m}\) là tần số của nhóm chứa trung vị,

\(C = {n_1} + {n_2} + ... + {n_{m - 1}}\).

Khi đó, trung vị của mẫu số liệu là: \({M_e} = {u_m} + \frac{{\frac{n}{2} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right)\).

+ Sử dụng kiến thức về xác định tứ phân vị của mẫu số liệu ghép nhóm để tính:

Tứ phân vị thứ hai của mẫu số liệu ghép nhóm, kí hiệu \({Q_2}\), cũng chính là trung vị của mẫu số liệu ghép nhóm.

Để tìm tứ phân vị thứ nhất của mẫu số liệu ghép nhóm, kí hiệu \({Q_1}\), ta làm như sau:

Giả sử nhóm \(\left[ {{u_m};{u_{m + 1}}} \right)\) chứa tứ phân vị thứ nhất, \({n_m}\) là tần số của nhóm chứa tứ phân vị thứ nhất, \(C = {n_1} + {n_2} + ... + {n_{m - 1}}\)

Khi đó, tứ phân vị thứ nhất của mẫu số liệu là: \({Q_1} = {u_m} + \frac{{\frac{n}{4} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right)\)

Để tìm tứ phân vị thứ ba của mẫu số liệu ghép nhóm, kí hiệu \({Q_3}\), ta làm như sau:

Giả sử nhóm \(\left[ {{u_j};{u_{j + 1}}} \right)\) chứa tứ phân vị thứ ba, \({n_j}\) là tần số của nhóm chứa tứ phân vị thứ ba, \(C = {n_1} + {n_2} + ... + {n_{j - 1}}\)

Khi đó, tứ phân vị thứ ba của mẫu số liệu là: \({Q_3} = {u_j} + \frac{{\frac{{3n}}{4} - C}}{{{n_j}}}.\left( {{u_{j + 1}} - {u_j}} \right)\)

Lời giải chi tiết

a) Bảng tần số ghép nhóm bao gồm giá trị đại diện là:

Trung bình số năm thâm niên của công nhân nhà máy A là:

\(\overline {{x_A}}  = \frac{{2,5.35 + 7,5.13 + 12,5.12 + 17,5.12 + 22,5.8}}{{35 + 13 + 12 + 12 + 8}} = 9,0625\) (năm)

Trung bình số năm thâm niên của công nhân nhà máy B là:

\(\overline {{x_B}}  = \frac{{2,5.14 + 7,5.26 + 12,5.24 + 17,5.11 + 22,5.5}}{{14 + 26 + 24 + 11 + 5}} = 10,4375\) (năm)

Vậy nếu so sánh theo số trung bình (năm) thì thâm niên công tác của nhân viên công ty A ngắn hơn thâm niên công tác của nhân viên công ty B.

Nhà máy A:

Cỡ mẫu \(n = 80\)

Gọi \({x_1},{x_2},...,{x_{80}}\) là mẫu số liệu được xếp theo thứ tự không giảm.

Ta có: \({x_1},...,{x_{35}} \in \left[ {0;5} \right),{x_{36}},...,{x_{48}} \in \left[ {5;10} \right),{x_{49}},...,{x_{60}} \in \left[ {10;15} \right),\)

\({x_{61}},...,{x_{72}} \in \left[ {15;20} \right),{x_{73}},...,{x_{80}} \in \left[ {20;25} \right)\).

Do cỡ mẫu \(n = 80\) nên trung vị của mẫu số liệu là \(\frac{1}{2}\left( {{x_{40}} + {x_{41}}} \right)\). Do đó trung vị của mẫu số liệu thuộc nhóm \(\left[ {5;10} \right)\).

Trung vị của mẫu số liệu ghép nhóm là: \({M_e}\left( A \right) = 5 + \frac{{\frac{{80}}{2} - 35}}{{13}}.\left( {10 - 5} \right) = \frac{{90}}{{13}}\)

Nhà máy B:

Cỡ mẫu \(n = 80\)

Gọi \({x_1},{x_2},...,{x_{80}}\) là mẫu số liệu được xếp theo thứ tự không giảm.

Ta có: \({x_1},...,{x_{14}} \in \left[ {0;5} \right),{x_{15}},...,{x_{40}} \in \left[ {5;10} \right),{x_{41}},...,{x_{64}} \in \left[ {10;15} \right),\)

\({x_{65}},...,{x_{75}} \in \left[ {15;20} \right),{x_{76}},...,{x_{80}} \in \left[ {20;25} \right)\)

Do cỡ mẫu \(n = 80\) nên trung vị của mẫu số liệu là \(\frac{1}{2}\left( {{x_{40}} + {x_{41}}} \right)\). Do \({x_{40}} \in \left[ {5;10} \right),{x_{41}} \in \left[ {10;15} \right)\) nên ta có trung vị là \({M_e}\left( B \right) = 10\)

Vì \(\frac{{90}}{{13}} < 10\) nên nếu so sánh theo trung vị thì thâm niên công tác của nhân viên công ty A ngắn hơn thâm niên công tác của nhân viên công ty B.

b) Nhà máy A:

Do cỡ mẫu \(n = 80\) nên tứ phân vị thứ nhất của mẫu số liệu là \(\frac{1}{2}\left( {{x_{20}} + {x_{21}}} \right)\). Do đó tứ phân vị thứ nhất của mẫu số liệu thuộc nhóm \(\left[ {0;5} \right)\).

Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

\({Q_1}\left( A \right) = 0 + \frac{{\frac{{80}}{4} - 0}}{{35}}.\left( {5 - 0} \right) = \frac{{20}}{7}\)

Do cỡ mẫu \(n = 80\) nên tứ phân vị thứ ba của mẫu số liệu là \(\frac{1}{2}\left( {{x_{60}} + {x_{61}}} \right)\). Do \({x_{60}} \in \left[ {10;15} \right),{x_{61}} \in \left[ {15;20} \right)\) nên tứ phân vị thứ ba của mẫu số liệu ghép nhóm là \({Q_3}\left( A \right) = 15\).

Nhà máy B:

Do cỡ mẫu \(n = 80\) nên tứ phân vị thứ nhất của mẫu số liệu là \(\frac{1}{2}\left( {{x_{20}} + {x_{21}}} \right)\). Do đó tứ phân vị thứ nhất của mẫu số liệu thuộc nhóm \(\left[ {5;10} \right)\).

Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1}\left( B \right) = 5 + \frac{{\frac{{80}}{4} - 14}}{{26}}.\left( {10 - 5} \right) = \frac{{80}}{{13}}\)

Do cỡ mẫu \(n = 80\) nên tứ phân vị thứ ba của mẫu số liệu là \(\frac{1}{2}\left( {{x_{60}} + {x_{61}}} \right)\). Do đó tứ phân vị thứ ba của mẫu số liệu thuộc nhóm \(\left[ {10;15} \right)\) nên tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3}\left( B \right) = 10 + \frac{{\frac{{3.80}}{4} - \left( {14 + 26} \right)}}{{24}}.\left( {15 - 10} \right) = \frac{{85}}{6}\)


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 4 trang 158 sách bài tập toán 11 - Chân trời sáng tạo tập 1

    Thầy giáo thống kê lại số lần kéo xà đơn của các học sinh nam khối 11 ở bảng sau: a) Hãy ước lượng số trung bình, mốt và trung vị của mẫu số liệu ghép nhóm trên. b) Thầy giáo dự định chọn 25% học sinh có số lần kéo thấp nhất để bồi dưỡng thể lực thêm. Thầy giáo nên chọn học sinh có thành tích kéo xà đơn dưới bao nhiêu lần để bồi dưỡng thể lực?

  • Giải bài 5 trang 159 sách bài tập toán 11 - Chân trời sáng tạo tập 1

    Kết quả kiểm tra cân nặng của một số quả trứng chim cút được lựa chọn ngẫu nhiên ở hai trang trại chăn nuôi A và B được biểu diễn ở biểu đồ sau (đơn vị: g). a) Hãy so sánh cân nặng của trứng chim cút của hai trang trại A và B theo số trung bình và trung vị. b) Hãy ước lượng tứ phân vị thứ nhất và tứ phân vị thứ ba của cân nặng trứng chim cút của trang trại A.

  • Giải bài 2 trang 158 sách bài tập toán 11 - Chân trời sáng tạo tập 1

    Người ta thống kê tốc độ của một số xe ô tô di chuyển qua một trạm kiểm soát trên đường cao tốc trong một khoảng thời gian ở bảng sau: Hãy ước lượng các tứ phân vị của mẫu số liệu ghép nhóm trên.

  • Giải bài 1 trang 158 sách bài tập toán 11 - Chân trời sáng tạo tập 1

    Một trang báo điện tử thống kê thời gian người sử dụng đọc thông tin trên trang trong mỗi lần truy cập ở bảng sau: Hãy ước lượng các tứ phân vị của mẫu số liệu ghép nhóm trên.

Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí