Giải bài 2.14 trang 37 Chuyên đề học tập Toán 10 – Kết nối tri thức


Tìm hệ số của \({x^5}\) trong khai triển thành đa thức của biểu thức

Đề bài

Tìm hệ số của \({x^5}\) trong khai triển thành đa thức của biểu thức

 \(x{\left( {1 - 2x} \right)^5} + {x^2}{(1 + 3x)^{10}}\)

Phương pháp giải - Xem chi tiết

Tìm hệ số a của \({x^4}\) trong khai triển thành đa thức của \({\left( {1 - 2x} \right)^5}\)

Tìm hệ số a’ của \({x^3}\) trong khai triển thành đa thức của \({(1 + 3x)^{10}}\)

=> Hệ số của \({x^5}\) trong khai triển thành đa thức của biểu thức đã cho là a + a’.

Lời giải chi tiết

+) Tìm hệ số của \({x^4}\) trong khai triển thành đa thức của \({\left( {1 - 2x} \right)^5}\)

Số hạng chứa \({x^k}\) trong khai triển của \({\left( {1 - 2x} \right)^5}\) hay \({\left( { - 2x + 1} \right)^5}\) là \(C_5^{5 - k}{( - 2x)^k}{1^{5 - k}}\)

Số hạng chứa \({x^4}\) ứng với \(k = 4\), tức là số hạng \(C_5^1{( - 2x)^4}\) hay \(80{x^4}\)

Vậy hệ số của \({x^4}\) trong khai triển của \({\left( {1 - 2x} \right)^5}\) là \(80.\)

+) Tìm hệ số của \({x^3}\) trong khai triển thành đa thức của \({(1 + 3x)^{10}}\)

Số hạng chứa \({x^k}\) trong khai triển của \({(1 + 3x)^{10}}\) hay \({(3x + 1)^{10}}\) là \(C_{10}^{10 - k}{(3x)^k}{1^{10 - k}}\)

Số hạng chứa \({x^3}\) ứng với \(k = 3\), tức là số hạng \(C_{10}^7{(3x)^3}\) hay \(3240{x^3}\)

Vậy hệ số của \({x^3}\) trong khai triển của \({(1 + 3x)^{10}}\) là \(3240.\)

=> Hệ số của \({x^5}\) trong khai triển thành đa thức của biểu thức đã cho là 3320.


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí