Giải vth Toán 9, soạn vở thực hành Toán 9 KNTT
                        
                                                        Bài 13. Mở đầu về đường tròn trang 97, 98, 99 Vở thực h..
                                                    Giải bài 2 trang 98 vở thực hành Toán 9>
Cho tam giác ABC vuông tại A có (AB = 3cm,AC = 4cm). Chứng minh rằng các điểm A, B, C thuộc cùng một đường tròn. Tính bán kính của đường tròn đó.
Tổng hợp đề thi giữa kì 1 lớp 9 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Khoa học tự nhiên
Đề bài
Cho tam giác ABC vuông tại A có \(AB = 3cm,AC = 4cm\). Chứng minh rằng các điểm A, B, C thuộc cùng một đường tròn. Tính bán kính của đường tròn đó.
Phương pháp giải - Xem chi tiết
+ Gọi O là trung điểm của BC.
+ Chứng minh \(OA = OB = OC = \frac{1}{2}CB\) nên A, B, C cùng thuộc đường tròn tâm O, bán kính \(R = \frac{{CB}}{2}\).
+ Áp dụng định lí Pythagore trong tam giác ABC vuông tại A để tính BC, từ đó tính được bán kính R.
Lời giải chi tiết
(H.5.2)

Gọi O là trung điểm của BC. Xét tam giác ABC vuông tại A có AO là đường trung tuyến ứng với cạnh huyền BC nên \(OA = OB = OC = \frac{1}{2}CB\). Do đó, ba điểm A, B, C cùng cách đều O nên A, B, C cùng thuộc đường tròn tâm O, bán kính \(R = \frac{{CB}}{2}\).
Áp dụng định lí Pythagore trong tam giác ABC vuông tại A, ta có: \(B{C^2} = A{B^2} + A{C^2} = 25\) suy ra \(BC = 5cm\).
Do đó, \(R = \frac{{BC}}{2} = \frac{5}{2}\left( {cm} \right)\).
Vậy ba điểm A, B, C cùng thuộc một đường tròn tâm O bán kính \(\frac{5}{2}cm\).
- Giải bài 3 trang 99 vở thực hành Toán 9
 - Giải bài 4 trang 99 vở thực hành Toán 9
 - Giải bài 5 trang 100 vở thực hành Toán 9
 - Giải bài 1 trang 98 vở thực hành Toán 9
 - Giải câu hỏi trắc nghiệm trang 97, 98 vở thực hành Toán 9
 
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay
                
                                    
                                    
        



