Giải bài 2 trang 75 sách bài tập toán 10 - Chân trời sáng tạo>
Viết phương trình chính tắc của các đường conic dưới đây. Gọi tên và tìm tọa độ các tiêu điểm của chúng
Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Đề bài
Viết phương trình chính tắc của các đường conic dưới đây. Gọi tên và tìm tọa độ các tiêu điểm của chúng
a) \(\left( {{C_1}} \right):7{x^2} + 13{y^2} = 1\)
b) \(\left( {{C_2}} \right):25{x^2} - 9{y^2} = 225\)
c) \(\left( {{C_3}} \right):x = 2{y^2}\)
Phương pháp giải - Xem chi tiết
Phương trình Elip có dạng \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) với \(a > b > 0\) có hai tiêu điểm \({F_1}\left( { - c;0} \right),{F_2}\left( {c;0} \right)\)và có tiêu cự là \(2c\) với \(c = \sqrt {{a^2} - {b^2}} \)
Phương trình Hypebol có dạng \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) với \(a > b > 0\) có hai tiêu điểm \({F_1}\left( { - c;0} \right),{F_2}\left( {c;0} \right)\)và có tiêu cự là \(2c\) với \(c = \sqrt {{a^2} + {b^2}} \)
Parabol \(\left( P \right)\) có dạng \({y^2} = 2px\) với \(p > 0\) có tiêu điểm \(F\left( {\frac{p}{2};0} \right)\), phương trình đường chuẩn \(\Delta :x = - \frac{p}{2}\)
Lời giải chi tiết
a) \(\left( {{C_1}} \right):7{x^2} + 13{y^2} = 1 \Rightarrow \frac{{{x^2}}}{{\frac{1}{7}}} + \frac{{{y^2}}}{{\frac{1}{{13}}}} = 1 \Rightarrow {a^2} = \frac{1}{7};{b^2} = \frac{1}{{13}}\)
\( \Rightarrow {c^2} = {a^2} - {b^2} = \frac{1}{7} - \frac{1}{{13}} = \frac{6}{{91}} \Rightarrow c = \sqrt {\frac{6}{{91}}} \)
\(\left( {{C_1}} \right)\) là elip có hai tiêu điểm \({F_1}\left( { - \sqrt {\frac{6}{{91}}} ;0} \right),{F_2}\left( {\sqrt {\frac{6}{{91}}} ;0} \right)\)
b) \(\begin{array}{l}\left( {{C_2}} \right):25{x^2} - 9{y^2} = 225 \Rightarrow \frac{{25{x^2}}}{{225}} - \frac{{9{y^2}}}{{225}} = 1 \Rightarrow \frac{{{x^2}}}{9} - \frac{{{y^2}}}{{25}} = 1\\ \Rightarrow {a^2} = 9;{b^2} = 25;{c^2} = {a^2} + {b^2} = 9 + 25 = 34 \Rightarrow c = \sqrt {34} \end{array}\)
\(\left( {{C_2}} \right)\) là hypebol có hai tiêu điểm \({F_1}\left( { - \sqrt {34} ;0} \right),{F_2}\left( {\sqrt {34} ;0} \right)\)
c) \(\left( {{C_3}} \right):x = 2{y^2} \Rightarrow {y^2} = \frac{1}{2}x \Rightarrow p = \frac{1}{4}\)
\(\left( {{C_3}} \right)\) là parabol có tiêu điểm \(F\left( {\frac{1}{8};0} \right)\)
- Giải bài 3 trang 75 SBT toán 10 - Chân trời sáng tạo
- Giải bài 4 trang 76 sách bài tập toán 10 - Chân trời sáng tạo
- Giải bài 5 trang 76 sách bài tập toán 10 - Chân trời sáng tạo
- Giải bài 6 trang 76 sách bài tập toán 10 - Chân trời sáng tạo
- Giải bài 1 trang 75 sách bài tập toán 10 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay