Giải bài 2 trang 30 vở thực hành Toán 8


Viết các biểu thức sau dưới dạng lập phương của một tổng hoặc một hiệu.

Đề bài

Viết các biểu thức sau dưới dạng lập phương của một tổng hoặc một hiệu.

a) \(27 + 54x + 36{x^2}\; + 8{x^3}\).

b) \(64{x^3}\;-144{x^2}y + 108x{y^2}\;-27{y^3}\).

Phương pháp giải - Xem chi tiết

- Sử dụng hằng đẳng thức lập phương của một tổng: \({(a + b)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\)

- Sử dụng hằng đẳng thức lập phương của một hiệu: \({(a - b)^3} = {a^3} - 3{a^2}b + 3a{b^2} - {b^3}\)

Lời giải chi tiết

a) \(27 + 54x + 36{x^2}\; + 8{x^3}\; = {3^3}\; + {3.3^2}.2x + 3.3.{\left( {2x} \right)^2}\; + {\left( {2x} \right)^3}\)

\( = {\left( {3 + 2x} \right)^3}\).

b) \(64{x^3}\;-144{x^2}y + 108x{y^2}\;-27{y^3}\)

\(\begin{array}{*{20}{l}}{ = {{\left( {4x} \right)}^3}\;-3.{{\left( {4x} \right)}^2}.3y + 3.4x.{{\left( {3y} \right)}^2}\;-{{\left( {3y} \right)}^3}}\\{ = {{\left( {4x-3y} \right)}^3}.}\end{array}\)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí