Giải Bài 2 trang 22 SGK Toán 8 tập 2 – Chân trời sáng tạo>
Với giá trị nào của (m) thì mỗi hàm số sau đây là hàm số bậc nhất?
Đề bài
Với giá trị nào của \(m\) thì mỗi hàm số sau đây là hàm số bậc nhất?
a) \(y = \left( {m - 1} \right)x + m\); b) \(y = 3 - 2mx\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Hàm số \(y = ax + b\) là hàm số bậc nhất nếu \(a \ne 0\).
Lời giải chi tiết
a) Để hàm số \(y = \left( {m - 1} \right)x + m\) là hàm số bậc nhất thì \(m - 1 \ne 0 \Leftrightarrow m \ne 1\).
Vậy để hàm số \(y = \left( {m - 1} \right)x + m\) là hàm số bậc nhất thì \(m \ne 1\).
b) Ta có: \(y = 3 - 2mx = - 2mx + 3\)
Để hàm số \(y = - 2mx + 3\) là hàm số bậc nhất thì \( - 2m \ne 0 \Leftrightarrow m \ne 0\).
Vậy để hàm số \(y = 3 - 2mx\) là hàm số bậc nhất thì \(m \ne 0\).
- Giải Bài 3 trang 22 SGK Toán 8 tập 2 – Chân trời sáng tạo
- Giải Bài 4 trang 22 SGK Toán 8 tập 2 – Chân trời sáng tạo
- Giải Bài 5 trang 22 SGK Toán 8 tập 2 – Chân trời sáng tạo
- Giải Bài 6 trang 22 SGK Toán 8 tập 2 – Chân trời sáng tạo
- Giải Bài 1 trang 22 SGK Toán 8 tập 2 – Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 8 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Xác suất lí thuyết và xác suất thực nghiệm SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Mô tả xác suất bằng tỉ số SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Hai hình đồng dạng SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Các trường hợp đồng dạng của hai tam giác vuông SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Các trường hợp đồng dạng của hai tam giác SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Xác suất lí thuyết và xác suất thực nghiệm SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Mô tả xác suất bằng tỉ số SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Hai hình đồng dạng SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Các trường hợp đồng dạng của hai tam giác vuông SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Các trường hợp đồng dạng của hai tam giác SGK Toán 8 - Chân trời sáng tạo