Giải bài 1.6 trang 11 SGK Toán 10 tập 1 – Kết nối tri thức>
Xác định tính đúng sai của mệnh đề sau và tìm mệnh đề phủ định của nó.
Đề bài
Xác định tính đúng sai của mệnh đề sau và tìm mệnh đề phủ định của nó.
Q: “\(\exists \;n \in \mathbb{N},n\) chia hết cho \(n + 1\)”
Phương pháp giải - Xem chi tiết
Phủ định của mệnh đề Q: “\(\exists \;n \in X, P(n)\)” là mệnh đề \(\overline Q \): “\(\forall \;n \in X, \overline {P(n)}\)”)
Lời giải chi tiết
Mệnh đề Q: “\(\exists \;n \in \mathbb{N},n\) chia hết cho \(n + 1\)” đúng. Vì \(\exists \;0 \in \mathbb{N},0\; \vdots \;1\).
Mệnh đề phủ định của mệnh đề Q, kí hiệu \(\overline Q\) là: “\(\forall \;n \in \mathbb{N},n\) không chia hết cho \(n + 1\)”
- Giải bài 1.7 trang 11 SGK Toán 10 tập 1 – Kết nối tri thức
- Giải bài 1.5 trang 11 SGK Toán 10 tập 1 – Kết nối tri thức
- Giải bài 1.4 trang 11 SGK Toán 10 tập 1 – Kết nối tri thức
- Giải bài 1.3 trang 11 SGK Toán 10 tập 1 – Kết nối tri thức
- Giải bài 1.2 trang 11 SGK Toán 10 tập 1 – Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức