Giải bài 10 trang 33 Chuyên đề học tập Toán 11 Cánh diều>
Chứng minh rằng các đa giác đều có cùng số cạnh thì đồng dạng với nhau.
Đề bài
Chứng minh rằng các đa giác đều có cùng số cạnh thì đồng dạng với nhau.
Phương pháp giải - Xem chi tiết
- Phép biến hình F biến 2 điểm M, N bất kì thành 2 điểm M’, N’ sao cho \(M'N' = kMN\) với k là số thực dương cho trước, gọi là phép đồng dạng tỉ số k.
- Nếu phép vị tự tâm O tỉ số k \(\left( {k \ne 0} \right)\) lần lượt biến 2 điểm A, B thành 2 điểm A’, B’ thì \(A'B' = \left| k \right|AB\)
Lời giải chi tiết
Giả sử cho hai n-giác đều và \({B_1}{B_2} \ldots {B_n}\) có tâm lần lượt là O và O'. Đặt \(k = \frac{{{B_1}{B_2}}}{{{A_1}{A_2}}} = \frac{{O'{B_1}}}{{O{A_1}}}\) . Gọi V là phép vị tự tâm O, tỉ số k và \({C_1}{C_2} \ldots {C_n}\) là ảnh của đa giác \({A_1}{A_2}...{A_n}\) qua phép vị tự V. Hiển nhiên \({C_1}{C_2} \ldots {C_n}\) cũng là đa giác đều và vì \(\frac{{{C_1}{C_2}}}{{{A_1}{A_2}}} = k\) nên \({C_1}{C_2}\; = {\rm{ }}{B_1}{B_2}\). Vậy hai n-giác đều \({C_1}{C_2} \ldots {C_n}\) và \({B_1}{B_2} \ldots {B_n}\) có cạnh bằng nhau, tức là có phép dời hình D biến \({C_1}{C_2} \ldots {C_n}\) thành \({B_1}{B_2} \ldots {B_n}\). Nếu gọi F là phép hợp thành của V và D thì F là phép đồng đạng biến \({A_1}{A_2} \ldots {A_n}\;\) thành \({B_1}{B_2} \ldots {B_n}\). Vậy hai đa giác đều đó đồng dạng với nhau.
- Giải bài 11 trang 33 Chuyên đề học tập Toán 11 Cánh diều
- Giải bài 12 trang 33 Chuyên đề học tập Toán 11 Cánh diều
- Giải bài 9 trang 33 Chuyên đề học tập Toán 11 Cánh diều
- Giải bài 8 trang 33 Chuyên đề học tập Toán 11 Cánh diều
- Giải bài 7 trang 33 Chuyên đề học tập Toán 11 Cánh diều
>> Xem thêm
Các bài khác cùng chuyên mục
- Giải bài 1 trang 72 Chuyên đề học tập Toán 11 Cánh diều
- Giải bài 2 trang 73 Chuyên đề học tập Toán 11 Cánh diều
- Giải bài 3 trang 73 Chuyên đề học tập Toán 11 Cánh diều
- Giải khởi động trang 65 Chuyên đề học tập Toán 11 - Cánh diều
- Giải mục 1 trang 66, 67, 68, 69, 70 Chuyên đề học tập Toán 11 - Cánh diều
- Giải bài 1 trang 72 Chuyên đề học tập Toán 11 Cánh diều
- Giải bài 3 trang 73 Chuyên đề học tập Toán 11 Cánh diều
- Giải bài 2 trang 73 Chuyên đề học tập Toán 11 Cánh diều
- Giải mục 2 trang 71, 72 Chuyên đề học tập Toán 11 - Cánh diều
- Giải mục 1 trang 66, 67, 68, 69, 70 Chuyên đề học tập Toán 11 - Cánh diều