Giải bài 1 trang 135 SGK Toán 8 tập 2 - Kết nối tri thức


Thực hiện phép tính:

Đề bài

Thực hiện phép tính:

\(a){\left( {2{\rm{x}} + y} \right)^2} + {\left( {5{\rm{x}} - y} \right)^2} + 2\left( {2{\rm{x}} + y} \right)\left( {5{\rm{x}} - y} \right)\)

\(b)\left( {2{\rm{x}} - {y^3}} \right)\left( {2{\rm{x}} + {y^3}} \right) - \left( {2{\rm{x}} - {y^2}} \right)\left( {4{{\rm{x}}^2} + 2{\rm{x}}{y^2} + {y^4}} \right)\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Áp dụng các công thức nhân đa thức với đa thức và các hằng đẳng thức đã học để thực hiện phép tính

Lời giải chi tiết

\(\begin{array}{l}a){\left( {2{\rm{x}} + y} \right)^2} + {\left( {5{\rm{x}} - y} \right)^2} + 2\left( {2{\rm{x}} + y} \right)\left( {5{\rm{x}} - y} \right)\\ = 4{{\rm{x}}^2} + 4{\rm{x}}y + {y^2} + 25{{\rm{x}}^2} - 10{\rm{x}}y + {y^2} + 2.\left( {10{{\rm{x}}^2} - 2{\rm{x}}y + 5{\rm{x}}y - {y^2}} \right)\\ = 4{{\rm{x}}^2} + 4{\rm{x}}y + {y^2} + 25{{\rm{x}}^2} - 10{\rm{x}}y + {y^2} + 20{{\rm{x}}^2} - 4{\rm{x}}y + 10xy - 2{y^2}\\ = 49{{\rm{x}}^2}\end{array}\)

\(\begin{array}{l}b)\left( {2{\rm{x}} - {y^3}} \right)\left( {2{\rm{x}} + {y^3}} \right) - \left( {2{\rm{x}} - {y^2}} \right)\left( {4{{\rm{x}}^2} + 2{\rm{x}}{y^2} + {y^4}} \right)\\ = 4{{\rm{x}}^2} - {y^6} - 8{{\rm{x}}^3} - 4{{\rm{x}}^2}{y^2} - 2{\rm{x}}{y^4} + 4{{\rm{x}}^2}{y^2} + 2{\rm{x}}{y^4} + {y^6}\\ =  - 8{{\rm{x}}^3} + 4{{\rm{x}}^2}\end{array}\)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí