 Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
                                                
                            Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
                         Câu hỏi và bài tập ôn tập chương IV
                                                        Câu hỏi và bài tập ôn tập chương IV
                                                    Câu 58 trang 178 SGK Đại số và Giải tích 11 Nâng cao>
Tìm giới hạn của dãy số (un) xác định bởi
Đề bài
Tìm giới hạn của dãy số (un) xác định bởi
\({u_n} = {1 \over {1.2}} + {1 \over {2.3}} + ... + {1 \over {n\left( {n + 1} \right)}}.\)
Hướng dẫn : Với mỗi số nguyên dương k, ta có
\({1 \over {k\left( {k + 1} \right)}} = {1 \over k} - {1 \over {k + 1}}\)
Phương pháp giải - Xem chi tiết
Với mỗi số nguyên dương k, ta có
\({1 \over {k\left( {k + 1} \right)}} = {1 \over k} - {1 \over {k + 1}}\)
Lời giải chi tiết
\({u_n} = \left( {1 - {1 \over 2}} \right) + \left( {{1 \over 2} - {1 \over 3}} \right) + ... \)
\(+ \left( {{1 \over {n - 1}}}-{1 \over n} \right) + \left( {{1 \over n} - {1 \over {n + 1}}} \right) \) \(= 1 - {1 \over {n + 1}}\)
Do đó \(\lim {u_n} = \lim \left( {1 - {1 \over {n + 1}}} \right) = 1\)
Loigiaihay.com
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ 
                 
                 
                                     
                                     
        
 
                                            




 
             
            