Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
Bài 1. Phương pháp quy nạp toán học
Câu 5 trang 100 SGK Đại số và Giải tích 11 Nâng cao>
Hãy chứng minh
Đề bài
Cho n là một số nguyên lớn hơn 1. Hãy chứng minh bất đẳng thức sau:
\({1 \over {n + 1}} + {1 \over {n + 2}} + ... + {1 \over {2n}} > {{13} \over {24}}.\)
Lời giải chi tiết
+) Với \(n = 2\) ta có : \({1 \over 3} + {1 \over 4} = {7 \over {12}} > {{13} \over {24}}\)
Như vậy (1) đúng khi \(n = 2\)
+) Giả sử (1) đúng khi \(n = k, k > 2\), tức là giả sử
\({1 \over {k + 1}} + {1 \over {k + 2}} + ... + {1 \over {2k}} > {{13} \over {24}}\)
+) Ta sẽ chứng minh (1) cũng đúng khi \(n = k + 1\), nghĩa là ta sẽ chứng minh
\({1 \over {k + 2}} + {1 \over {k + 3}} + ... + {1 \over {2k + 1}} + {1 \over {2\left( {k + 1} \right)}} > {{13} \over {24}}\)
Thật vậy , ta có:
\(\eqalign{
& {1 \over {k + 2}} + {1 \over {k + 3}} + ... + {1 \over {2k}} + {1 \over {2k + 1}} + {1 \over {2\left( {k + 1} \right)}} \cr
& = {1 \over {k + 1}} + {1 \over {k + 2}} + ... + {1 \over {2k}} + {1 \over {2k + 1}} + {1 \over {2\left( {k + 1} \right)}} - {1 \over {k + 1}} \cr
& = {1 \over {k + 1}} + {1 \over {k + 2}} + ... + {1 \over {2k}} + {{2\left( {k + 1} \right) + 2k + 1 - 2\left( {2k + 1} \right)} \over {2\left( {k + 1} \right)\left( {2k + 1} \right)}} \cr
& = {1 \over {k + 1}} + {1 \over {k + 2}} + ... + {1 \over {2k}} + {1 \over {2\left( {k + 1} \right)\left( {2k + 1} \right)}} \cr
& > {1 \over {k + 1}} + {1 \over {k + 2}} + ... + {1 \over {2k}} > {{13} \over {24}} \cr} \)
(theo giả thiết quy nạp)
Từ các chứng minh trên suy ra (1) đúng với mọi số nguyên \(n > 1\).
Loigiaihay.com




