Câu 4.39 trang 108 SBT Đại số 10 Nâng cao


Giải bài tập Câu 4.39 trang 108 SBT Đại số 10 Nâng cao.

Quảng cáo

Đề bài

Tìm các giá trị của m để hệ bất phương trình sau có nghiệm :

\(\left\{ {\begin{array}{*{20}{c}}{x + 4{m^2} \le 2mx + 1}\\{3{x} + 2 > 2{x} - 1}\end{array}} \right.\)

 

Lời giải chi tiết

Ta có:

\(\left( I \right)\left\{ {\begin{array}{*{20}{c}}{x + 4{m^2} \le 2m{x} + 1}\\{3{x} + 2 > 2{x} - 1}\end{array}} \right.\)

\(\Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\left( {1 - 2m} \right)x \le 1 - 4{m^2}\,\,\,\,\,\,\,\,\left( 1 \right)}\\{x >  - 3.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)}\end{array}} \right.\)

Nếu \(m < \dfrac{1}{2}\) thì \(\,\left( 1 \right) \Leftrightarrow x \le 1 + 2m,\) nên hệ (I) có nghiệm khi \( - 3 < 1 + 2m,\) hay \(m > -2\). Kết hợp với điều kiện \(m < \dfrac{1}{2},\) ta có \( - 2 < m < \dfrac{1}{2}.\)

Nếu \(m = \dfrac{1}{2}\) thì (1) có dạng \(0.x ≤ 0\) (luôn đúng với mọi x ∈ R), nên hệ (I) luôn có nghiệm \(x > -3.\)

Nếu \(m > \dfrac{1}{2}\) thì \((1) ⇔ x ≥ 1 + 2m\), nên hệ (I) luôn có nghiệm \(x ≥ 1 + 2m.\)

Vậy khi \(m > -2\) thì hệ (I) luôn có nghiệm.

 Loigiaihay.com

 

Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!