Câu 40 trang 85 SGK Đại số và Giải tích 11 Nâng cao>
Trong một trò chơi điện tử, xác suất để An thắng trong một trân là 0,4 (không có hòa). Hỏi An phải chơi tối thiểu bao nhiêu trận để xác suất An thắng ít nhất một trận trong loạt chơi đó lớn hơn 0,95 ?
Đề bài
Trong một trò chơi điện tử, xác suất để An thắng trong một trận là 0,4 (không có hòa). Hỏi An phải chơi tối thiểu bao nhiêu trận để xác suất An thắng ít nhất một trận trong loạt chơi đó lớn hơn 0,95 ?
Lời giải chi tiết
Gọi n là số trận mà An chơi.
A là biến cố “An thắng ít nhất một trận trong loạt chơi n trận”.
Biến cố A là \(\overline A \) : “An thua cả n trận”.
Ta có: \(P\left( {\overline A } \right) = {\left( {0,6} \right)^n}\)
Vậy \(P(A) = 1 – (0,6)^n\).
Ta cần tìm số nguyên dương n nhỏ nhất thỏa mãn \(P(A) ≥ 0,95\)
\(\begin{array}{l}
\Leftrightarrow 1 - 0,{6^n} \ge 0,95\\
\Leftrightarrow 0,{6^n} \le 0,05
\end{array}\)
Ta có: \({\left( {0,6} \right)^5} \approx {\rm{ }}0,078;{\rm{ }}{\left( {0,6} \right)^6} \approx {\rm{ }}0,047\), \(0,{6^7} \approx 0,028\) nên n nhỏ nhất là 6.
Vậy An phải chơi tối thiểu 6 trận.
Loigiaihay.com
- Câu 41 trang 85 SGK Đại số và Giải tích 11 Nâng cao
- Câu 42 trang 85 SGK Đại số và Giải tích 11 Nâng cao
- Câu 39 trang 85 SGK Đại số và Giải tích 11 Nâng cao
- Câu 38 trang 85 SGK Đại số và Giải tích 11 Nâng cao
- Câu 37 trang 83 SGK Đại số và Giải tích 11 Nâng cao
>> Xem thêm