Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
ÔN TẬP CUỐI NĂM ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11 NÂNG CAO
Câu 4 trang 223 SGK Đại số và Giải tích 11 Nâng cao>
Giải các phương trình :
Giải các phương trình :
LG a
\({\sin ^4}x + {\cos ^4}x = {3 \over 4}\)
Lời giải chi tiết:

LG b
\({\sin ^2}2x - {\sin ^2}x = {\sin ^2}{\pi \over 4}\)
Lời giải chi tiết:
\(\eqalign{ & {\sin ^2}2x - {\sin ^2}x = {\sin ^2}{\pi \over 4} \cr & \Leftrightarrow 4{\sin ^2}x{\cos ^2}x - {\sin ^2}x = {1 \over 2} \cr & \Leftrightarrow 8{\sin ^2}x\left( {1 - {{\sin }^2}x} \right) - 2{\sin ^2}x = 1 \cr & \Leftrightarrow 8{\sin ^4}x - 6{\sin ^2}x + 1 = 0 \cr & \Leftrightarrow \left[ {\matrix{ {{{\sin }^2}x = {1 \over 2}} \cr {{{\sin }^2}x = {1 \over 4}} \cr } } \right. \Leftrightarrow \left[ {\matrix{ {{{1 - \cos 2x} \over 2} = {1 \over 2}} \cr {{{1 - \cos 2x} \over 2} = {1 \over 4}} \cr } } \right. \cr & \Leftrightarrow \left[ {\matrix{ {\cos 2x = 0} \cr {\cos 2x = {1 \over 2}} \cr } } \right. \cr} \)
\( \Leftrightarrow \left[ \begin{array}{l}
2x = \frac{\pi }{2} + k\pi \\
2x = \pm \frac{\pi }{3} + k2\pi
\end{array} \right. \) \(\Leftrightarrow \left[ \begin{array}{l}
x = \frac{\pi }{4} + \frac{{k\pi }}{2}\\
x = \pm \frac{\pi }{6} + k\pi
\end{array} \right.\)
LG c
\(\cos x\cos 2x = \cos 3x\)
Lời giải chi tiết:
\(\eqalign{ & \cos x\cos 2x = \cos 3x \cr & \Leftrightarrow {1 \over 2}\left( {\cos 3x + \cos x} \right) = \cos 3x \cr & \Leftrightarrow \cos 3x = \cos x \cr & \Leftrightarrow \left[ {\matrix{ {3x = x + k2\pi } \cr {3x = - x + k2\pi } \cr } } \right. \Leftrightarrow \left[ {\matrix{ {x = k\pi } \cr {x = k{\pi \over 2}} \cr } } \right.\cr& \Leftrightarrow x = k{\pi \over 2},k \in\mathbb Z \cr} \)
LG d
\(\tan 2x - \sin 2x + \cos 2x - 1 = 0\)
Lời giải chi tiết:
Điều kiện: \(\cos 2x \ne0\)
Ta có: \(\tan 2x = \dfrac{{\sin 2x}}{{\cos 2x}} \) \(\Rightarrow \sin 2x = \tan 2x\cos 2x\)
\(\eqalign{ & \tan 2x - \sin 2x + \cos 2x - 1 = 0 \cr & \Leftrightarrow \tan 2x - \tan 2x\cos 2x + \cos 2x - 1 = 0\cr & \Leftrightarrow \tan 2x\left( {1 - \cos 2x} \right) - \left( {1 - \cos 2x} \right) = 0 \cr & \Leftrightarrow \left( {1 - \cos 2x} \right)\left( {\tan 2x - 1} \right) = 0 \cr & \Leftrightarrow \left[ {\matrix{ {\tan 2x = 1} \cr {\cos 2x = 1} \cr } } \right. \cr} \)
\( \Leftrightarrow \left[ \begin{array}{l}
2x = \dfrac{\pi }{4} + k\pi \\
2x = k2\pi
\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}
x = \dfrac{\pi }{8} + \dfrac{{k\pi }}{2}\\
x = k\pi
\end{array} \right.,k \in Z\)
Loigiaihay.com




