Câu 34 trang 83 SGK Đại số và Giải tích 11 Nâng cao>
Gieo ba đồng xu cân đối một cách độc lập. Tính xác suất để :
Gieo ba đồng xu cân đối một cách độc lập. Tính xác suất để :
LG a
Cả ba đồng xu đều sấp ;
Phương pháp giải:
Sử dụng quy tắc nhân do 3 đồng xu độc lập
Lời giải chi tiết:
Gọi \(A_i\) là biến cố “Đồng xu thứ i sấp” (\(i = 1,2,3\)), ta có: \(P\left( A_i \right) = {1 \over 2}.\)
(Vì mỗi đồng xu khi gieo chỉ có thể sấp hoặc ngửa)
Vì gieo 3 đồng xu một cách độc lập nên các biến cố \({A_1},{\rm{ }}{A_2},{\rm{ }}{A_3}\) độc lập với nhau.
Biến cố cả 3 đồng xu đều gấp là: \({A_1} \cap {A_2} \cap {A_3}\)
Theo quy tắc nhân xác suất, ta có: \(P({A_1}{A_2}{A_3}) = P({A_1})P({A_2})P({A_3})\)
\(={1 \over 2}.{1 \over 2}.{1 \over 2}= {1 \over 8} \)
Vậy xác suất để ba đồng xu cùng sấp là \({1 \over 8}\)
LG b
Có ít nhất một đồng xu sấp ;
Lời giải chi tiết:
Gọi \(H\) là biến cố “Có ít nhất một đồng xu sấp”.
Biến cố đối của biến cố \(H\) là \(\overline H \) :”Cả ba đồng xu đều ngửa”.
Gọi \(B_i\) là biến cố “Đồng xu thứ i ngửa” (\(i = 1,2,3\)), ta có: \(P\left( B_i \right) = {1 \over 2}.\)
Các biến cố \({B_1},{\rm{ }}{B_2},{\rm{ }}{B_3}\) độc lập.
Theo quy tắc nhân xác suất, ta có: \(P({B_1}{B_2}{B_3}) = P({B_1})P({B_2})P({B_3})\)
\(={1 \over 2}.{1 \over 2}.{1 \over 2}= {1 \over 8}\)
Do đó \(P\left( {\overline H } \right) = {1 \over 8}.\)
Vậy : \(P\left( H \right) = 1 - {1 \over 8} = {7 \over 8}\)
LG c
Có đúng một đồng xu sấp.
Phương pháp giải:
Một trong ba đồng xu sấp, hai đồng xu còn lại ngửa
Lời giải chi tiết:
Gọi \(K\) là biến cố “Có đúng một đồng xu sấp”, tức là một trong ba đồng xu sấp, hai đồng xu còn lại ngửa
Vậy có 3 trường hợp: Đồng xu thứ i sấp, hai đồng còn lại ngửa \(( i =1,2,3)\)
Ta có:
\(K = {A_1}\overline {{A_2}}\, \overline {{A_3}} \cup \overline {{A_1}}\, {A_2}\overline {{A_3}} \cup \overline {{A_1}} \,\overline {{A_2}} {A_3}\)
Theo quy tắc cộng xác suất, ta có:
\(P\left( K \right) = P\left( {{A_1}\overline {{A_2}}\, \overline {{A_3}} } \right) + P\left( {\overline {{A_1}} {A_2}\overline {{A_3}} } \right) \)\(+ P\left( {\overline {{A_1}}\, \overline {{A_2}} {A_3}} \right)\)
Vì các đồng xu độc lâp với nhau, nên theo quy tắc nhân xác suất, ta được :
\(P\left( {{A_1}\overline {{A_2}}\, \overline {{A_3}} } \right) = P\left( {{A_1}} \right)P\left( {\overline {{A_2}} } \right)P\left( {\overline {{A_3}} } \right) = {1 \over 8}\)
Tương tự \(P\left( {\overline {{A_1}} {A_2}\overline {{A_3}} } \right) = P\left( {\overline {{A_1}}\, \overline {{A_2}} {A_3}} \right) = {1 \over 8}\).
Từ đó \(P\left( K \right) = {3 \over 8}\)
Loigiaihay.com
- Câu 35 trang 83 SGK Đại số và Giải tích 11 Nâng cao
- Câu 36 trang 83 SGK Đại số và Giải tích 11 Nâng cao
- Câu 37 trang 83 SGK Đại số và Giải tích 11 Nâng cao
- Câu 38 trang 85 SGK Đại số và Giải tích 11 Nâng cao
- Câu 39 trang 85 SGK Đại số và Giải tích 11 Nâng cao
>> Xem thêm