 Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
                                                
                            Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
                         Bài 5: Khoảng cách
                                                        Bài 5: Khoảng cách
                                                    Câu 29 trang 117 SGK Hình học 11 Nâng cao>
Cho tứ diện ABCD có AC = BC = AD = BD = a, AB = c, CD = c’. Tính khoảng cách giữa hai đường thẳng AB và CD.
Đề bài
Cho tứ diện ABCD có AC = BC = AD = BD = a, AB = c, CD = c’. Tính khoảng cách giữa hai đường thẳng AB và CD.
Lời giải chi tiết

Gọi M, N lần lượt là trung điểm của AB và CD
ΔACD cân nên AN ⊥ CD và ΔBCD cân nên BN ⊥ CD.
Do đó CD ⊥ (ABN) suy ra CD ⊥ MN.
Tương tự ta cũng có AB ⊥ MN
Vậy d(AB, CD) = MN
Ta có:
\(\eqalign{ & M{N^2} = A{N^2} - A{M^2} = A{D^2} - N{D^2} - A{M^2} \cr & = {a^2} - {{c{'^2}} \over 4} - {{{c^2}} \over 4} = {1 \over 4}\left( {4{a^2} - c{'^2} - {c^2}} \right) \cr} \)
Vậy \(MN = {1 \over 2}\sqrt {4{a^2} - c{'^2} - {c^2}} \) với điều kiện \(4{a^2} > {c^2} + c{'^2}\)
Loigiaihay.com
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ 
                 
                 
                                     
                                     
        
 
                                            




 
             
            