 Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
                                                
                            Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
                         Bài 4. Định nghĩa và một số định lí về giới hạn của hàm..
                                                        Bài 4. Định nghĩa và một số định lí về giới hạn của hàm..
                                                    Câu 23 trang 152 SGK Đại số và Giải tích 11 Nâng cao>
Tìm các giới hạn sau :
Tìm các giới hạn sau :
LG a
\(\mathop {\lim }\limits_{x \to 2} \left( {3{x^2} + 7x + 11} \right)\)
Phương pháp giải:
Thay x vào hàm số suy ra giới hạn.
Lời giải chi tiết:
\(\eqalign{& \mathop {\lim }\limits_{x \to 2} \left( {3{x^2} + 7x + 11} \right) \cr &= \mathop {\lim }\limits_{x \to 2} 3{x^2} + \mathop {\lim }\limits_{x \to 2} 7x + \mathop {\lim }\limits_{x \to 2} 11 \cr & = {3.2^2} + 7.2 + 11 = 37 \cr} \)
LG b
\(\mathop {\lim }\limits_{x \to 1} {{x - {x^3}} \over {\left( {2x - 1} \right)\left( {{x^4} - 3} \right)}}\)
Lời giải chi tiết:
\(\mathop {\lim }\limits_{x \to 1} {{x - {x^3}} \over {\left( {2x - 1} \right)\left( {{x^4} - 3} \right)}} \) \( = \frac{{1 - {1^3}}}{{\left( {2.1 - 1} \right)\left( {{1^4} - 3} \right)}}\) \(= {0 \over { - 2}} = 0\)
LG c
\(\mathop {\lim }\limits_{x \to 0} x\left( {1 - {1 \over x}} \right)\)
Lời giải chi tiết:
\(\mathop {\lim }\limits_{x \to 0} x\left( {1 - {1 \over x}} \right) = \mathop {\lim }\limits_{x \to 0} \left( {x - 1} \right) = - 1\)
LG d
\(\mathop {\lim }\limits_{x \to 9} {{\sqrt x - 3} \over {9x - {x^2}}}\)
Phương pháp giải:
Phân tích mẫu thức thành nhân tử, khử dạng vô định và tính giới hạn.
Lời giải chi tiết:
\(\mathop {\lim }\limits_{x \to 9} {{\sqrt x - 3} \over {9x - {x^2}}} = \mathop {\lim }\limits_{x \to 9} {{\sqrt x - 3} \over { - x\left( {x - 9} \right)}}\) \( = \mathop {\lim }\limits_{x \to 9} \frac{{\sqrt x - 3}}{{ - x\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}\) \( = - \mathop {\lim }\limits_{x \to 9} {1 \over {x\left( {\sqrt x + 3} \right)}} \) \( = - \frac{1}{{9\left( {\sqrt 9 + 3} \right)}}\) \(= - {1 \over {54}}\)
LG e
\(\mathop {\lim }\limits_{x \to \sqrt 3 } \left| {{x^2} - 4} \right|\)
Lời giải chi tiết:
\(\mathop {\lim }\limits_{x \to \sqrt 3 } \left| {{x^2} - 4} \right| \) \(= \left| {{{\left( {\sqrt 3 } \right)}^2} - 4} \right| = \left| { - 1} \right|\) \(= 1\)
LG f
\(\mathop {\lim }\limits_{x \to 2} \sqrt {{{{x^4} + 3x - 1} \over {2{x^2} - 1}}} \)
Lời giải chi tiết:
\(\mathop {\lim }\limits_{x \to 2} \sqrt {{{{x^4} + 3x - 1} \over {2{x^2} - 1}}} = \sqrt {{{{2^4} + 3.2 - 1} \over {{{22}^2} - 1}}} = \sqrt 3 \)
Loigiaihay.com
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ 
                 
                 
                                     
                                     
        
 
                                            




 
             
            