Câu 22 trang 30 SGK Đại số và Giải tích 11 Nâng cao


Tính các góc của tam giác ABC

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

Tính các góc của tam giác \(ABC\), biết \(AB = \sqrt 2  cm\), \(AC =\sqrt 3  cm\) và đường cao \(AH = 1cm\). (Gợi ý : Xét trường hợp \(B, C\) nằm khác phía đối với \(H\) và trường hợp \(B, C\) nằm cùng phía đối với \(H\)).

Lời giải chi tiết

Ta xét hai trường hợp :

a/ \(B\) và \(C\) nằm khác phía đối với \(H\)

Trong tam giác vuông \(ABH\) ta có :

\(\sin B = {{AH} \over {AB}} = {1 \over {\sqrt 2 }}\)      

Suy ra \(\widehat B = 45^\circ \) (chú ý rằng góc \(B\) nhọn)

Trong tam giác \(ACH\) ta có :

\(\sin C = {{AH} \over {AC}} = {1 \over {\sqrt 3 }},\) suy ra \(\widehat C \approx 35^\circ 15'52\)

Từ đó  \(\widehat A = 180^\circ - \left( {\widehat B + \widehat C} \right) \approx 99^\circ 44'8\)

b/ \(B\) và \(C\) nằm cùng phía đối với \(H\)

Tương tự như trên ta có:

\(\sin \widehat {ABH} = \frac{{AH}}{{AB}} = \frac{1}{{\sqrt 2 }}\) \( \Rightarrow \widehat {ABH} = {45^0}\)

\(\eqalign{
& \widehat {ABC} = 180^\circ - \widehat {ABH} \cr&= 180^\circ - 45^\circ = 135^\circ \cr } \)

\(\sin \widehat {ACH} = \frac{{AH}}{{AC}} = \frac{1}{{\sqrt 3 }}\) \( \Rightarrow \widehat {ACH} = {35^0}15'52''\)

Từ đó \(\widehat A = 180^\circ - \left( {\widehat B + \widehat C} \right) \approx 9^\circ 44'8\)

Loigiaihay.com


Bình chọn:
3.8 trên 6 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

Bài viết mới nhất

Sự tích hoa sen - Truyện cổ tích

Sự tích hoa dạ lan hương - Truyện cổ tích

Sự tích cây huyết dụ - Truyện cổ tích

Sự tích quả dưa bở - Truyện cổ tích

Sự tích cá chép hóa rồng - Truyện cổ tích

3+ Dẫn chứng về Tư duy đổi mới hay nhất

3+ Dẫn chứng về Hiện tượng fan cuồng hay nhất

3+ Dẫn chứng về Tha thứ hay nhất

3+ Dẫn chứng về Tự do hay nhất

3+ Dẫn chứng về Giữ lời hứa hay nhất