 Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
                                                
                            Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
                         Bài 2: Hai đường thẳng song song
                                                        Bài 2: Hai đường thẳng song song
                                                    Câu 20 trang 55 SGK Hình học 11 Nâng cao >
Cho tứ diện ABCD và ba điểm P, Q, R lần lượt nằm trên ba cạnh AB, CD, BC. Hãy xác định giao điểm S của mp(PQR) với cạnh AD nếu:
Cho tứ diện ABCD và ba điểm P, Q, R lần lượt nằm trên ba cạnh AB, CD, BC. Hãy xác định giao điểm S của mp(PQR) với cạnh AD nếu:
LG a
PR // AC
Phương pháp giải:
- Tìm giao tuyến của (PQR) với (ACD).
Sử dụng tính chất: Nếu hai mặt phẳng chứa hai đường thẳng song song thì chúng cắt nhau theo giao tuyến song song với đường thẳng đã cho.
- Tìm giao điểm S của AD với giao tuyến trên.
Lời giải chi tiết:
Trường hợp PR // AC

Ta có: \(\left\{ \begin{array}{l}
PR \subset \left( {PQR} \right)\\
AC \subset \left( {ACD} \right)\\
PR//AC\\
Q \in \left( {PQR} \right) \cap \left( {ACD} \right)
\end{array} \right. \) \(\Rightarrow \left( {PQR} \right) \cap \left( {ACD} \right) = Qt//AC\)
Trong (ACD), gọi S = Qt ∩ AD thì S = AD ∩ (PQR).
LG b
PR cắt AC
Lời giải chi tiết:
Trường hợp PR cắt AC

Trong (ABC), gọi I = PR ∩ AC
\( \Rightarrow \left\{ \begin{array}{l}
I \in AC \subset \left( {ACD} \right)\\
I \in PR \subset \left( {PQR} \right)
\end{array} \right.\)\( \Rightarrow I \in \left( {ACD} \right) \cap \left( {PQR} \right)\)
Mà \( Q\in \left( {ACD} \right) \cap \left( {PQR} \right)\)
⇒ (PQR) ∩ (ACD) = QI
Trong mp(ACD) ta có
S = QI ∩ AD thì S = AD ∩ (PQR).
Loigiaihay.com
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ 
                 
                 
                                     
                                     
        
 
                                            




 
             
            