Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
ÔN TẬP CUỐI NĂM ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11 NÂNG CAO
Câu 15 trang 225 SGK Đại số và Giải tích 11 Nâng cao>
Các số x – y, x + y và 3x – 3y
Đề bài
Các số x – y, x + y và 3x – 3y theo thứ tự đó lập thành một cấp số cộng, đồng thời các số x – 2, y + 2 và 2x + 3y theo thứ tự đó lập thành một cấp số nhân.
Hãy tìm x và y.
Lời giải chi tiết
+) Do 3 số x- y; x+ y và 3x – 3y theo thứ tự lập thành cấp số cộng nên:
2(x+ y) = (x- y) + (3x- 3y)
Hay 2x + 2y = 4x – 4y
⇔ - 2x = -6y hay x= 3y
+) Do các số x- 2, y+ 2 và 2x + 3y theo thứ tự lập thành cấp số nhân nên:
(x - 2).(2x + 3y) = (y + 2)2 (*)
Thay x = 3y vào (*) ta được:
(3y – 2).(6y + 3y) = (y + 2)2
⇔ (3y – 2).9y – (y + 2)2 = 0
⇔ 27y2 – 18y – y2 – 4y - 4= 0
⇔26y2 – 22y – 4 = 0
\( \Leftrightarrow \left[ \begin{array}{l}y = 1 \Rightarrow x = 3\\y = - \frac{2}{{13}} \Rightarrow x = - \frac{6}{{13}}\end{array} \right.\)
Vậy \(\left( {x;y} \right) \in \left\{ {\left( {3;1} \right),\left( { - \frac{6}{{13}}; - \frac{2}{{13}}} \right)} \right\}\)
Loigiaihay.com




