Tìm \(n\) để các hàm số bậc nhất \(y = 3nx + 4\) và \(y = 6x + 4\) có đồ thị là những đường thẳng trùng nhau.
Hai đường thẳng \(d:y = ax + b\) và \(d':y = a'x + b'\) trùng nhau khi \(\left\{ \begin{array}{l}a = a'\\b = b'\end{array} \right.\).
Đồ thị hai hàm số \(y = 3nx + 4\) và \(y = 6x + 4\) trùng nhau khi:
\(\left\{ \begin{array}{l}3n = 6\\4 = 4\end{array} \right. \Rightarrow 3n = 6 \Leftrightarrow n = 6:3 \Leftrightarrow n = 2\)
Vậy \(n = 2\) thì đồ thị hai hàm số \(y = 3nx + 4\) và \(y = 6x + 4\) trùng nhau.
Các bài tập cùng chuyên đề
Cho hai đường thẳng d: \(y = \left( {m + 2} \right)x + m\) và d’: \(y = - 2x - 2m + 1\). Với giá trị nào của m thì d trùng với d’?
Cho hai đồ thị hàm số bậc nhất là: \(y = \left( {m - 1} \right)x + 6\) và \(y = 5x + 2m - 6\)
Giá trị của \(m\) để hai đường thẳng này trùng nhau là
Với giá trị nào của k và m thì hai đường sau sẽ trùng nhau?
\(y = kx + \left( {m - 2} \right)\left( {k \ne 0} \right);y = 5x + 4 - m - kx\left( {k \ne 5} \right)\)
Hai đường thẳng, \(y = 2mx + 1\left( {m \ne 0} \right)\) và \(y = \left( {m + 1} \right)x + 1\left( {m \ne - 1} \right)\) trùng nhau khi: