Cho hai đường thẳng d: \(y = \left( {m + 2} \right)x + m\) và d’: \(y = - 2x - 2m + 1\). Với giá trị nào của m thì d trùng với d’?
-
A.
Không có giá trị nào của m
-
B.
\(m = 0\)
-
C.
\(m = 1\)
-
D.
\(m = 2\)
d là hàm số bậc nhất khi \(m \ne - 2\)
Hai đường thẳng d: \(y = \left( {m + 2} \right)x + m\) và d’: \(y = - 2x - 2m + 1\) trùng nhau khi:
\(\left\{ \begin{array}{l}m + 2 = - 2\\m = - 2m + 1\end{array} \right.\; \Leftrightarrow \;\left\{ \begin{array}{l}m = - 4\\m = \frac{1}{3}\end{array} \right.\) (vô lí)
Vậy không có giá trị nào của m thỏa mãn bài toán
Đáp án : A
Các bài tập cùng chuyên đề
Tìm \(n\) để các hàm số bậc nhất \(y = 3nx + 4\) và \(y = 6x + 4\) có đồ thị là những đường thẳng trùng nhau.
Cho hai đồ thị hàm số bậc nhất là: \(y = \left( {m - 1} \right)x + 6\) và \(y = 5x + 2m - 6\)
Giá trị của \(m\) để hai đường thẳng này trùng nhau là
Với giá trị nào của k và m thì hai đường sau sẽ trùng nhau?
\(y = kx + \left( {m - 2} \right)\left( {k \ne 0} \right);y = 5x + 4 - m - kx\left( {k \ne 5} \right)\)
Hai đường thẳng, \(y = 2mx + 1\left( {m \ne 0} \right)\) và \(y = \left( {m + 1} \right)x + 1\left( {m \ne - 1} \right)\) trùng nhau khi: