Cho \(a\) và \(b\) là hai số nguyên khác \(0.\) Biết \(a \, \vdots \, b\) và \(b \, \vdots \, a.\) Khi đó
-
A.
\(a = b\)
-
B.
\(a = - b\)
-
C.
\(a = 2b\)
-
D.
Cả A, B đều đúng
Sử dụng định nghĩa chia hết: \(a \, \vdots \, b\) nếu và chỉ nếu tồn tại số \(q \in Z\) sao cho \(a = b.q\)
Ta có:
\(\begin{array}{l}a \, \vdots \, b \Rightarrow a = b.{q_1}\left( {{q_1} \in Z} \right)\\b \, \vdots \, a \Rightarrow b = a.{q_2}\left( {{q_2} \in Z} \right)\end{array}\)
Suy ra \(a = b.{q_1} = \left( {a.{q_2}} \right).{q_1} = a.\left( {{q_1}{q_2}} \right)\)
Vì \(a \ne 0\) nên \(a = a\left( {{q_1}{q_2}} \right) \Rightarrow 1 = {q_1}{q_2}\)
Mà \({q_1},{q_2} \in Z\) nên \({q_1} = {q_2} = 1\) hoặc \({q_1} = {q_2} = - 1\)
Do đó \(a = b\) hoặc \(a = - b\)
Đáp án : D
Các bài tập cùng chuyên đề
Cho $a,b \in Z$ và $b \ne 0.$ Nếu có số nguyên $q$ sao cho $a = bq$ thì
Các bội của $6$ là:
Tập hợp các ước của $ - 8$ là:
Có bao nhiêu ước của \( - 24.\)
Tập hợp tất cả các bội của $7$ có giá trị tuyệt đối nhỏ hơn $50$ là:
Tìm $x,$ biết: $12\; \vdots \;x$ và $x < - 2$
Có bao nhiêu số nguyên \(x\) biết: $x\; \vdots \;5$ và $\left| x \right| < 30?$
Giá trị lớn nhất của $a$ thỏa mãn $a + 4$ là ước của $9$ là:
Tìm $x$ biết: \(25.x = - 225\)
Cho \(x \in \mathbb{Z}\) và \(\left( { - 154 + x} \right) \vdots \, 3\) thì:
Tìm tất cả các ước chung của $ - 18$ và $30.$
Giá trị nào dưới đây của \(x\) thỏa mãn \( - 6\left( {x + 7} \right) = 96?\)
Tìm $n \in Z,$ biết: $\left( {n{\rm{ }} + 5} \right) \vdots \left( {n{\rm{ }} + 1} \right)$
Có bao nhiêu số nguyên $a < 5$ biết: $10$ là bội của $\left( {2a + 5} \right)$
Có bao nhiêu cặp số \(\left( {x;y} \right)\) nguyên biết: \(\left( {x - 1} \right)\left( {y + 1} \right) = 3?\)
Tìm $x,$ biết: $x \, \vdots \, 6$ và $24 \, \vdots \, x$
Tìm số nguyên \(x\) thỏa mãn \({\left( { - 9} \right)^2}.x = 150 + 12.13x\)
Gọi \(A\) là tập hợp các giá trị $n \in Z$ để \(\left( {{n^2} - 7} \right)\) là bội của \(\left( {n + 3} \right)\). Tổng các phần tử của \(A\) bằng:
Cho \(x;\,y \in \mathbb{Z}\). Nếu \(5x + 46y\) chia hết cho $16$ thì \(x + 6y\) chia hết cho
Có bao nhiêu số nguyên \(n\) thỏa mãn \(\left( {n - 1} \right)\) là bội của \(\left( {n + 5} \right)\) và \(\left( {n + 5} \right)\) là bội của \(\left( {n - 1} \right)?\)