Đề bài

Trong các số $333; 354; 360; 2457; 1617; 152,$ các số chia hết cho $9$  là

  • A.

    $333$

  • B.

    $360$

  • C.

    $2457$     

  • D.

    Cả A, B, C đều đúng

Phương pháp giải

Sử dụng dấu hiệu chia hết cho $9$ : Các số có tổng các chữ số chia hết cho $9$ thì chia hết cho $9.$

Lời giải của GV Loigiaihay.com

Các số $333;2457;360$ là các số chia hết cho $9$ vì tổng các chữ số của nó chia hết cho $9.$

+) Số $333$ có tổng các chữ số là $3+3+3=9 \, \vdots \, 9$ nên $ 333 \, \vdots \, 9.$

+) Số $2457$ có tổng các chữ số là $2+4+5+7=18 \, \vdots \, 9$ nên $ 2457 \, \vdots \, 9.$

+) Số $360$ có tổng các chữ số là $3+6+0=9 \, \vdots \, 9$ nên $ 360 \, \vdots \, 9.$

Các số còn lại $354; 1617; 152$ đều có tổng các chữ số không chia hết cho $9$ nên chúng không chia hết cho $9$.

Đáp án : D

Các bài tập cùng chuyên đề

Bài 1 :

Hãy chọn câu sai:

Xem lời giải >>
Bài 2 :

Hãy chọn câu sai:

Xem lời giải >>
Bài 3 :

Tổng chia hết cho 5 là

Xem lời giải >>
Bài 4 :

Từ ba trong 4 số 5, 6, 3, 0, hãy ghép thành số có ba chữ số khác nhau là số lớn nhất chia hết cho 2 và 5.

Xem lời giải >>
Bài 5 :

Cho $5$ số $0;1;3;6;7.$ Có bao nhiêu số tự nhiên có ba chữ số và chia hết cho 3 được lập từ các số trên mà các chữ số không lặp lại.

Xem lời giải >>
Bài 6 :

Cho số \(A = \overline {a785b} \) . Tìm tổng các chữ số $a$  và $b$  sao cho $A$  chia $9$  dư $2.$

Xem lời giải >>
Bài 7 :

Cho số \(N = \overline {5a27b} \) .Có bao nhiêu số  N sao cho N  là số có $5$ chữ số khác nhau và N chia cho $3$ thì dư $2,$  N chia cho $5$ thì dư $1$ và N chia hết cho $2.$

Xem lời giải >>
Bài 8 :

Tìm các chữ số $x, y$ biết rằng: \(\overline {23x5y} \) chia hết cho $2; 5$ và $9.$

Xem lời giải >>
Bài 9 :

Chọn câu trả lời đúng.

Trong các số \(2055;6430;5041;2341;2305\)

Xem lời giải >>
Bài 10 :

Số tự nhiên \(a\) chia cho \(65\) dư \(10.\) Khi đó số tự nhiên \(a\)

Xem lời giải >>
Bài 11 :

Có bao nhiêu số tự nhiên dạng \(\overline {5a42b} \) chia hết cho cả \(2;5\) và \(3?\)

Xem lời giải >>
Bài 12 :

Tìm các số tự nhiên \(x\) vừa chia hết cho \(2\) vừa chia hết cho \(5\) và \(1998 < x < 2018.\)

Xem lời giải >>
Bài 13 :

Tìm số tự nhiên \(\overline {145*} \) chia hết cho cả \(3\) và \(5.\)

Xem lời giải >>
Bài 14 :

Dùng ba trong bốn chữ số \(5;8;4;0\) hãy lập ra các số tự nhiên chia hết cho \(3\) mà không chia hết cho \(9.\)

Xem lời giải >>
Bài 15 :

Có bao nhiêu cặp số \(a;b\) sao cho số \(\overline {52ab} \) chia hết cho \(9\) và chia cho \(5\) dư \(2.\)

Xem lời giải >>
Bài 16 :

Kết quả của phép tính \({99^5} - {98^4} + {97^3} - {96^2}\) chia hết cho

Xem lời giải >>
Bài 17 :

Số \(A = \overline {abcd}  - \left( {a + b + c + d} \right)\) chia hết cho số nào dưới đây?

Xem lời giải >>
Bài 18 :

Trong những số sau, có bao nhiêu số chia hết cho 2?

100000984, 12345, 12543456, 1234567, 155498

Xem lời giải >>
Bài 19 :

Cho \(\overline {17*} \)chia hết cho 2. Số thay thế cho * có thể là

Xem lời giải >>
Bài 20 :

Số lớn nhất có 4 chữ số khác nhau và chia hết cho 2 là:

Xem lời giải >>