Tìm số tự nhiên \(\overline {145*} \) chia hết cho cả \(3\) và \(5.\)
-
A.
\(1454\)
-
B.
\(1450\)
-
C.
\(1455\)
-
D.
\(1452\)
+ Các số chia hết cho \(5\) có chữ số tận cùng là \(0\) hoặc \(5.\)
+ Các số chia hết cho \(3\) có tổng các chữ số chia hết cho \(3.\)
Từ đó lập luận để tìm các số thỏa mãn.
Vì \(\overline {145*} \) chia hết cho \(5\) nên \(*\) có thể bằng \(0\) hoặc \(5.\)
+ Nếu \(*\) bằng \(0\) thì ta được số \(1450\) có \(1 + 4 + 5 + 0 = 10\not \vdots 3\) nên loại
+ Nếu \(*\) bằng \(5\) thì ta được số \(1455\) có \(1 + 4 + 5 + 5 = 15 \vdots 3\) nên thỏa mãn.
Vậy số cần tìm là \(1455.\)
Đáp án : C



