Một bạn học sinh làm như sau $5\mathop = \limits_{\left( 1 \right)} \sqrt {25} \mathop = \limits_{\left( 2 \right)} \sqrt {16 + 9} \mathop = \limits_{\left( 3 \right)} \sqrt {16} + \sqrt 9 \mathop = \limits_{\left( 4 \right)} 4 + 3\mathop = \limits_{\left( 5 \right)} 7$ . Chọn kết luận đúng.
-
A.
Bạn đã làm đúng.
-
B.
Bạn đã làm sai từ bước \(\left( 1 \right)\).
-
C.
Bạn đã làm sai từ bước \(\left( 2 \right)\).
-
D.
Bạn đã làm sai từ bước \(\left( 3 \right)\).
Ta không có tính chất sau: \(\sqrt {A + B} = \sqrt A + \sqrt B \)
Vì \(\sqrt {16 + 9} < \sqrt {16} + \sqrt 9 \,\left( {{\rm{do }}\sqrt {25} = 5 < 7} \right)\) nên bạn đã làm sai từ bước (3).
Đáp án : D
Các bài tập cùng chuyên đề
Chọn câu đúng
-
A.
Số dương chỉ có một căn bậc hai
-
B.
Số dương có hai căn bậc hai là hai số đối nhau
-
C.
Số dương không có căn bậc hai
-
D.
Số dương có hai căn bậc hai là hai số cùng dấu
Vì \({3^2} = ...\) nên \(\sqrt {...} = 3\). Hai số thích hợp điền vào chỗ trống lần lượt là
-
A.
\(9\) và \(9\)
-
B.
\(9\) và \(3\)
-
C.
\(3\) và \(3\)
-
D.
\(3\) và \(9\)
Chọn câu đúng.
-
A.
Căn bậc hai số học của một số \(a\) không âm là số $x$ sao cho \({x^2} = a.\)
-
B.
Căn bậc hai số học của một số \(a\) không âm là số $x$ sao cho \({x^3} = a.\)
-
C.
Căn bậc hai số học của một số \(a\) không âm là số $x$ sao cho \(x = {a^2}.\)
-
D.
Căn bậc hai số học của một số \(a\) không âm là số $x$ sao cho \(x = {a^3}.\)
Tính \(\sqrt {49} \)
-
A.
\( - 7\)
-
B.
\(9\)
-
C.
\( \pm 7\)
-
D.
\(7\)
Chọn câu đúng.
-
A.
\( - \sqrt {\dfrac{{64}}{{121}}} = \dfrac{8}{{11}}\)
-
B.
$ - \sqrt {\dfrac{{64}}{{121}}} = - \dfrac{8}{{11}}$
-
C.
\( - \sqrt {\dfrac{{64}}{{121}}} = \pm \dfrac{8}{{11}}\)
-
D.
\( - \sqrt {\dfrac{{64}}{{121}}} = \dfrac{{ - 32}}{{11}}\)
So sánh hai số \(\sqrt {9.16} \) và \(\sqrt 9 .\sqrt {16} \)
-
A.
\(\sqrt {9.16} = \sqrt 9 .\sqrt {16} \)
-
B.
\(\sqrt {9.16} < \sqrt 9 .\sqrt {16} \)
-
C.
\(\sqrt {9.16} > \sqrt 9 .\sqrt {16} \)
-
D.
Không thể so sánh
Tìm \(x \in \mathbb{Q}\) biết \({x^2} = 225\).
-
A.
\(x = 15\)
-
B.
$x = - 15$
-
C.
\(x = 15\) hoặc \(x = - 15\)
-
D.
\(x = 25\)
Tìm \(x\) thỏa mãn \(\sqrt {2x} = 6\).
-
A.
\(x = \pm 18\)
-
B.
$x = 19$
-
C.
\(x = 18\)
-
D.
\(x = 36\)
Có bao nhiêu giá trị của \(x\) thỏa mãn \(\sqrt {2x + 3} = 25\)
-
A.
\(0\)
-
B.
$1$
-
C.
\(2\)
-
D.
\(311\)
So sánh \(A = \sqrt 7 + \sqrt {15} \) và \(7.\)
-
A.
\(A > 7\)
-
B.
$A < 7$
-
C.
\(A = 7\)
-
D.
\(A \ge 7\)