Bài 9.4 trang 86 SGK Toán 11 tập 2 - Kết nối tri thức>
Một vật được phóng theo phương thẳng đứng lên trên từ mặt đất với vận tốc ban đầu là 19,6 m/s
Đề bài
Một vật được phóng theo phương thẳng đứng lên trên từ mặt đất với vận tốc ban đầu là 19,6 m/s thì độ cao h của nó (tính bằng mét) sau t giây được cho bởi công thức \(h = 19,6t - 4,9{t^2}.\) Tìm vận tốc của vật khi nó chạm đất.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Nếu hàm số \(y = f\left( x \right)\) có đạo hàm tại điểm \({x_0}\) thì phương trình tiếp tuyến của đồ thị hàm số tại điểm \(P\left( {{x_0};{y_0}} \right)\) là \(y - {y_0} = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right),\) trong đó \({y_0} = f\left( {{x_0}} \right)\)
Lời giải chi tiết
Với \({x_0}\) bất kì, ta có:
\(f'\left( {{t_0}} \right) = \mathop {\lim }\limits_{t \to {t_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{t - {t_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{19,6t - 4,9{t^2} - 19,6{t_0} + 4,9t_0^2}}{{t - {t_0}}}\\ = \mathop {\lim }\limits_{t \to {t_0}} \frac{{ - 4,9\left( {{t^2} - t_0^2} \right) + 19,6\left( {t - {t_0}} \right)}}{{t - {t_0}}} = \mathop {\lim }\limits_{t \to {t_0}} \frac{{\left( {t - {t_0}} \right)\left( { - 4,9t - 4,9{t_0} + 19,6} \right)}}{{t - {t_0}}}\\ = \mathop {\lim }\limits_{t \to {t_0}} \left( { - 4,9t - 4,9{t_0} + 19,6} \right) = - 9,8{t_0} + 19,6\)
Vậy hàm số \(h = 19,6t - 4,9{t^2}\) có đạo hàm là hàm số \(h' = - 9,8{t_0} + 19,6\)
Độ cao của vật khi nó chạm đất thỏa mãn \(19,6t - 4,9{t^2} = 0 \Leftrightarrow \left[ \begin{array}{l}t = 0\\t = 4\end{array} \right.\)
Khi t = 4, vận tốc của vật khi nó chạm đất là \( - 9,8.4 + 19,6 = - 19,6\) (m/s)
Vậy vận tốc của vật khi nó chạm đất là 19,6 m/s.
- Bài 9.5 trang 86 SGK Toán 11 tập 2 - Kết nối tri thức
- Bài 9.3 trang 86 SGK Toán 11 tập 2 - Kết nối tri thức
- Bài 9.2 trang 86 SGK Toán 11 tập 2 - Kết nối tri thức
- Bài 9.1 trang 86 SGK Toán 11 tập 2 - Kết nối tri thức
- Giải mục 4 trang 84, 85 SGK Toán 11 tập 2 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức