Bài 9.13 trang 102 SGK Toán 11 tập 2 - Cùng khám phá>
Một hộp đèn có 12 bóng, trong đó có 4 bóng hỏng
Đề bài
Một hộp đèn có 12 bóng, trong đó có 4 bóng hỏng. Lấy ngẫu nhiên 3 bóng. Tính xác suất để trong 3 bóng có ít nhất 1 bóng hỏng.
Phương pháp giải - Xem chi tiết
Áp dụng công thức tính xác suất của biến cố đối: \(P\left( {\overline A } \right) = 1 - P\left( A \right)\).
Lời giải chi tiết
Không gian mẫu (số cách chọn 3 bóng bất kì trong 12 bóng) là \(n\left( \Omega \right) = C_{12}^3 = 220\).
Có 8 bóng trong số 12 bóng không bị hỏng, do đó số cách chọn được 3 bóng mà không bóng nào hỏng là \(n\left( A \right) = C_8^3 = 56\).
Xác suất để chọn được 3 bóng mà không bóng nào hỏng là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{56}}{{220}} = \frac{{14}}{{55}}\).
Xác suất trong 3 bóng được chọn có ít nhất 1 bóng hỏng là \(P\left( {\overline A } \right) = 1 - P\left( A \right) = 1 - \frac{{14}}{{55}} = \frac{{41}}{{55}}\).


- Bài 9.14 trang 102 SGK Toán 11 tập 2 - Cùng khám phá
- Bài 9.15 trang 102 SGK Toán 11 tập 2 - Cùng khám phá
- Bài 9.16 trang 102 SGK Toán 11 tập 2 - Cùng khám phá
- Bài 9.17 trang 102 SGK Toán 11 tập 2 - Cùng khám phá
- Bài 9.18 trang 102 SGK Toán 11 tập 2 - Cùng khám phá
>> Xem thêm
Các bài khác cùng chuyên mục
- Lý thuyết Công thức nhân xác suất - SGK Toán 11 Cùng khám phá
- Lý thuyết Công thức cộng xác suất - SGK Toán 11 Cùng khám phá
- Lý thuyết Thể tích khối lăng trụ, khối chóp và khối chóp cụt đều - SGK Toán 11 Cùng khám phá
- Lý thuyết Khoảng cách - SGK Toán 11 Cùng khám phá
- Lý thuyết Hai mặt phẳng vuông góc - SGK Toán 11 Cùng khám phá
- Lý thuyết Công thức nhân xác suất - SGK Toán 11 Cùng khám phá
- Lý thuyết Công thức cộng xác suất - SGK Toán 11 Cùng khám phá
- Lý thuyết Thể tích khối lăng trụ, khối chóp và khối chóp cụt đều - SGK Toán 11 Cùng khám phá
- Lý thuyết Khoảng cách - SGK Toán 11 Cùng khám phá
- Lý thuyết Hai mặt phẳng vuông góc - SGK Toán 11 Cùng khám phá