

Bài 8.15 trang 78 SGK Toán 11 tập 2 - Kết nối tri thức>
Trong đợt kiểm tra cuối học kì II lớp 11 của các trường trung học phổ thông, thống kê cho thấy có 93% học sinh tỉnh X đạt yêu cầu; 87% học sinh tỉnh Y đạt yêu cầu.
Tổng hợp đề thi học kì 2 lớp 11 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Trong đợt kiểm tra cuối học kì II lớp 11 của các trường trung học phổ thông, thống kê cho thấy có 93% học sinh tỉnh X đạt yêu cầu; 87% học sinh tỉnh Y đạt yêu cầu. Chọn ngẫu nhiên một học sinh của tỉnh X và một học sinh của tỉnh Y. Giả thiết rằng chất lượng học tập của hai tỉnh là độc lập. Tính xác suất để:
a) Cả hai học sinh được chọn đều đạt yêu cầu;
b) Cả hai học sinh được chọn đều không đạt yêu cầu;
c) Chỉ có đúng một học sinh được chọn đạt yêu cầu;
d) Có ít nhất một trong hai học sinh được chọn đạt yêu cầu.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Áp dụng quy tắc cộng, quy tắc nhân, phương pháp tính xác suất của biến cố đối.
Lời giải chi tiết
Gọi các biến cố:
\(A\): “Chọn được học sinh tỉnh X đạt yêu cầu”.
Suy ra \(\overline A \): “Chọn được học sinh tỉnh X không đạt yêu cầu”.
\(B\): “Chọn được học sinh tỉnh Y đạt yêu cầu”.
Suy ra \(\overline B \): “Chọn được học sinh tỉnh Y không đạt yêu cầu”.
Ta có \(P(A) = 93\% = 0,93\); \(P(\overline A ) = 1 - P(A) = 1 - 0,93 = 0,07\);
\(P(A) = 87\% = 0,87\); \(P(\overline B ) = 1 - P(B) = 1 - 0,87 = 0,13\).
Có \(A\) và \(B\) là hai biến cố độc lập nên các cặp biến cố \(A - \overline B \); \(\overline A - B\) và \(\overline A - \overline B \) cũng độc lập.
a) Xác suất để cả hai học sinh được chọn đều đạt yêu cầu là:
\(P(AB) = P(A).P(B) = 0,93.0,87 = 0,8091\).
b) Xác suất để cả hai học sinh được chọn đều không đạt yêu cầu là:
\(P(\overline A \overline B ) = P(\overline A ).P(\overline B ) = 0,07.0,13 = 0,0091\).
c) Để chỉ có đúng một học sinh được chọn đạt yêu cầu:
+ TH1: Học sinh trường X đạt yêu cầu, học sinh trường Y không đạt yêu cầu:
\(P(A\overline B ) = P(A).P(\overline B ) = 0,93.0,13 = 0,1209\).
+ TH2: Học sinh trường X không đạt yêu cầu, học sinh trường Y đạt yêu cầu:
\(P(\overline A B) = P(\overline A ).P(B) = 0,07.0,87 = 0,0609\).
Vậy xác suất để chỉ có đúng một học sinh được chọn đạt yêu cầu là:
\(P(A\overline B ) + P(\overline A B) = 0,1209 + 0,0609 = 0,1818\).
d) Xác suất để có ít nhất một trong hai học sinh được chọn đạt yêu cầu là:
\(P(A \cup B) = P(A) + P(B) - P(AB) = 0,93 + 0,87 - 0,8091 = 0,9909\).


- Bài 8.14 trang 78 SGK Toán 11 tập 2 - Kết nối tri thức
- Bài 8.13 trang 78 SGK Toán 11 tập 2 - Kết nối tri thức
- Bài 8.12 trang 78 SGK Toán 11 tập 2 - Kết nối tri thức
- Bài 8.11 trang 78 SGK Toán 11 tập 2 - Kết nối tri thức
- Giải mục 2 trang 78 SGK Toán 11 tập 2 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức