Giải toán 11, giải bài tập toán lớp 11 đầy đủ đại số và giải tích, hình học
Bài 1. Đại cương về đường thẳng và mặt phẳng
Bài 8 trang 54 SGK Hình học 11>
Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của các cạnh AB và CD trên cạnh AD lấy điểm P không trùng với trung điểm của AD
Đề bài
Cho tứ diện \(ABCD\). Gọi \(M\) và \(N\) lần lượt là trung điểm của các cạnh \(AB\) và \(CD\) trên cạnh \(AD\) lấy điểm \(P\) không trùng với trung điểm của \(AD\)
a) Gọi \(E\) là giao điểm của đường thẳng \(MP\) và đường thẳng \(BD\). Tìm giao tuyến của hai mặt phẳng \((PMN)\) và \((BCD)\)
b) Tìm giao điểm của mặt phẳng \((PMN)\) và \(BC\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Muốn tìm giao tuyến của hai mặt phẳng, ta tìm hai điểm chung của hai mặt phẳng đó.
Lời giải chi tiết

a) Trong \(\left( {ABD} \right)\), ta có: \(E = MP \cap BD\). Vì:
\(\begin{array}{l}
\left\{ \begin{array}{l}
E \in BD \subset \left( {BCD} \right) \Rightarrow E \in \left( {BCD} \right)\\
E \in MP \subset \left( {MNP} \right) \Rightarrow E \in \left( {MNP} \right)
\end{array} \right.\\ \Rightarrow E \in \left( {BCD} \right) \cap \left( {MNP} \right)\\
\text {Lại có:}\\ \left\{ \begin{array}{l}
N \in CD \subset \left( {BCD} \right) \Rightarrow N \in \left( {BCD} \right)\\
N \in \left( {MNP} \right)
\end{array} \right.\\ \Rightarrow N \in \left( {BCD} \right) \cap \left( {MNP} \right)\\
\Rightarrow NE = \left( {BCD} \right) \cap \left( {MNP} \right)
\end{array}\) hay \(NE\) là giao tuyến của mặt phẳng \(BCD\) và \(MNP\)
b) Trong mặt phẳng \((BCD)\) gọi \(Q\) là giao điểm của \(NE\) và \(BC\) ta có:
\(\left\{ \begin{array}{l}
Q \in BC\\
Q \in NE \subset \left( {MNP} \right) \Rightarrow Q \in \left( {MNP} \right)
\end{array} \right.\\ \Rightarrow Q = BC \cap \left( {MNP} \right)\)
Loigiaihay.com




