Bài 5 trang 104 SGK Toán 11 tập 1 - Cánh Diều>
Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Gọi M, N lần lượt là trọng tâm của hai tam giác ABF và ABC. Chứng minh rằng đường thẳng MN song song với mặt phẳng (ACF).
Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Cánh diều
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Gọi M, N lần lượt là trọng tâm của hai tam giác ABF và ABC. Chứng minh rằng đường thẳng MN song song với mặt phẳng (ACF).
Phương pháp giải - Xem chi tiết
Dùng định lí Thales đảo và tính chất đường trung bình tam giác.
Lời giải chi tiết
Gọi I là trung điểm của AB.
M là trọng tâm tam giác ABF suy ra \(\frac{{IM}}{{IF}} = \frac{1}{3}\).
N là trọng tâm tam giác ABC suy ra \(\frac{{IN}}{{IC}} = \frac{1}{3}\).
Xét tam giác ICF có \(\frac{{IM}}{{IF}} = \frac{{IN}}{{IC}} = \frac{1}{3}\) suy ra MN//FC (định lí Thales đảo).
Mà FC thuộc mặt phẳng (AFC) suy ra MN//(AFC).
- Bài 6 trang 104 SGK Toán 11 tập 1 - Cánh Diều
- Bài 4 trang 104 SGK Toán 11 tập 1 - Cánh Diều
- Bài 3 trang 104 SGK Toán 11 tập 1 - Cánh Diều
- Bài 2 trang 104 SGK Toán 11 tập 1 - Cánh Diều
- Bài 1 trang 104 SGK Toán 11 tập 1 - Cánh Diều
>> Xem thêm
Các bài khác cùng chuyên mục
- Lý thuyết Hình lăng trụ đứng, hình chóp đều, thể tích của một số hình khối - Toán 11 Cánh diều
- Lý thuyết Khoảng cách - Toán 11 Cánh diều
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Cánh diều
- Lý thuyết Góc giữa đường thẳng và mặt phẳng, góc nhị diện - Toán 11 Cánh diều
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Cánh diều
- Lý thuyết Hình lăng trụ đứng, hình chóp đều, thể tích của một số hình khối - Toán 11 Cánh diều
- Lý thuyết Khoảng cách - Toán 11 Cánh diều
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Cánh diều
- Lý thuyết Góc giữa đường thẳng và mặt phẳng, góc nhị diện - Toán 11 Cánh diều
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Cánh diều