Bài 4 trang 79 SGK Toán 11 tập 1 - Cánh Diều


Tính các giới hạn sau: a) (mathop {lim }limits_{x to - infty } frac{{6x + 8}}{{5x - 2}}); b) (mathop {lim }limits_{x to + infty } frac{{6x + 8}}{{5x - 2}});

Đề bài

Tính các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{6x + 8}}{{5x - 2}}\);                     

b) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{6x + 8}}{{5x - 2}}\);                 

c) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{\sqrt {9{x^2} - x + 1} }}{{3x - 2}}\);

d) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {9{x^2} - x + 1} }}{{3x - 2}}\);            

e) \(\mathop {\lim }\limits_{x \to  - {2^ - }} \frac{{3{x^2} + 4}}{{2x + 4}}\);           

g) \(\mathop {\lim }\limits_{x \to  - {2^ + }} \frac{{3{x^2} + 4}}{{2x + 4}}\).

Phương pháp giải - Xem chi tiết

Sử dụng phương pháp:

- Chia cả tử và mẫu cho \({x^n}\), với n là số mũ cao nhất trong biểu thức đối với câu a, b.

- Câu c, d: \(\sqrt {{x^2}}  = \left| x \right| = \left\{ \begin{array}{l}x,x \to  + \infty \\ - x,x \to  - \infty \end{array} \right.\)

- Câu d, e sử dụng giới hạn cơ bản sau: \(\mathop {\lim }\limits_{x \to {a^ + }} \frac{1}{{x - a}} =  + \infty ;\mathop {\lim }\limits_{x \to {a^ - }} \frac{1}{{x - a}} =  - \infty \)

Lời giải chi tiết

a) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{6x + 8}}{{5x - 2}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{x\left( {6 + \frac{8}{x}} \right)}}{{x\left( {5 - \frac{2}{x}} \right)}} = \frac{6}{5}\)

b) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{6x + 8}}{{5x - 2}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{x\left( {6 + \frac{8}{x}} \right)}}{{x\left( {5 - \frac{2}{x}} \right)}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{6 + \frac{8}{x}}}{{5 - \frac{2}{x}}} = \frac{6}{5}\).

c) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{\sqrt {9{x^2} - x + 1} }}{{3x - 2}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{ - x\sqrt {9 - \frac{1}{x} + \frac{1}{{{x^2}}}} }}{{x\left( {3 - \frac{2}{x}} \right)}} =  - \frac{3}{3} =  - 1\).

d) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {9{x^2} - x + 1} }}{{3x - 2}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{x\sqrt {9 - \frac{1}{x} + \frac{1}{{{x^2}}}} }}{{x\left( {3 - \frac{2}{x}} \right)}} = \frac{3}{3} = 1\).

e) \(\mathop {\lim }\limits_{x \to  - {2^ - }} \frac{{3{x^2} + 4}}{{2x + 4}} =  - \infty \)

Do \(\mathop {\lim }\limits_{x \to  - {2^ - }} \left( {3{x^2} + 1} \right) = 3.{\left( { - 2} \right)^2} + 1 = 13 > 0\) và \(\mathop {\lim }\limits_{x \to  - {2^ - }} \frac{1}{{2x + 4}} =  - \infty \)

g) \(\mathop {\lim }\limits_{x \to  - {2^ + }} \frac{{3{x^2} + 4}}{{2x + 4}} =  + \infty \).

Do \(\mathop {\lim }\limits_{x \to  - {2^ + }} \left( {3{x^2} + 1} \right) = 3.{\left( { - 2} \right)^2} + 1 = 13 > 0\) và \(\mathop {\lim }\limits_{x \to  - {2^ + }} \frac{1}{{2x + 4}} =  + \infty \)


Bình chọn:
4.9 trên 7 phiếu
  • Bài 5 trang 79 SGK Toán 11 tập 1 - Cánh Diều

    Cho hàm số \(f(x) = \left\{ {\begin{array}{*{20}{l}}{2x + a}&{{\rm{ }}x < 2}\\4&{{\rm{ }}x = 2}\\{ - 3x + b}&{{\rm{ }}\,x > 2}\end{array}} \right.\)

  • Bài 6 trang 80 SGK Toán 11 tập 1 - Cánh Diều

    Từ độ cao \(55,8\;{\rm{m}}\) của tháp nghiêng Pisa nước Ý, người ta thả một quả bóng cao su chạm xuống đất (Hình 18).

  • Bài 7 trang 80 SGK Toán 11 tập 1 - Cánh Diều

    Cho một tam giác đều ABC cạnh \(a\). Tam giác \({A_1}{B_1}{C_1}\) có các đỉnh là trung điểm các cạnh của tam giác ABC, tam giác \({A_2}{B_2}{C_2}\) có các đỉnh là trung điểm các cạnh của tam giác \({A_1}{B_1}{C_1}, \ldots \), tam giác \({A_{n + 1}}{B_{n + 1}}{C_{n + 1}}\) có các đỉnh là trung điểm các cạnh của tam giác \({A_n}{B_n}{C_n}, \ldots \)

  • Bài 8 trang 80 SGK Toán 11 tập 1 - Cánh Diều

    Một thấu kính hội tụ có tiêu cự là \(f\). Gọi \(d\) và \(d'\) lần lượt là khoảng cách từ một vật thật AB và từ ảnh \(A'B'\) của nó tới quang tâm \(O\) của thấu kính như Hình 19. Công thức thấu kính là \(\frac{1}{d} + \frac{1}{{d'}} = \frac{1}{f}\).

  • Bài 3 trang 79 SGK Toán 11 tập 1 - Cánh Diều

    Tính các giới hạn sau: a) \(\mathop {\lim }\limits_{x \to - 3} \left( {4{x^2} - 5x + 6} \right)\); b) \(\mathop {\lim }\limits_{x \to 2} \frac{{2{x^2} - 5x + 2}}{{x - 2}}\); c) \(\mathop {\lim }\limits_{x \to 4} \frac{{\sqrt x - 2}}{{{x^2} - 16}}\).

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí