Bài 2 trang 63 SGK Toán 11 tập 2 - Cánh Diều>
Chứng minh rằng hàm số (f(x) = left| x right|) không có đạo hàm tại điểm ({x_0} = 0)
Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Cánh diều
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Chứng minh rằng hàm số \(f(x) = \left| x \right|\) không có đạo hàm tại điểm \({x_0} = 0\), nhưng có đạo hàm tại mọi điểm \(x \ne 0\)
Phương pháp giải - Xem chi tiết
Tách \(f(x) = \left| x \right|\) thành 2 phần và tìm đạo hàm của từng phần
Lời giải chi tiết
\(y = \left| x \right| = \left\{ \begin{array}{l}x\,\,\,(x \ge 0)\\ - x\,\,\,(x < 0)\end{array} \right. \Rightarrow y' = \left\{ \begin{array}{l}1\,\,\,(x \ge 0)\\ - 1\,\,\,(x < 0)\end{array} \right.\)
Ta có: \(\mathop {\lim }\limits_{x \to {0^ + }} y' = 1 \ne - 1 = \mathop {\lim }\limits_{x \to {0^ - }} y'\)
Vậy không tồn tại đạo hàm của hàm số tại x = 0
- Bài 3 trang 63 SGK Toán 11 tập 2 - Cánh Diều
- Bài 4 trang 63 SGK Toán 11 tập 2 - Cánh Diều
- Bài 1 trang 63 SGK Toán 11 tập 2 - Cánh Diều
- Giải mục 2 trang 62 SGK Toán 11 tập 2 - Cánh Diều
- Giải mục 1 trang 60 SGK Toán 11 tập 2 - Cánh Diều
>> Xem thêm
Các bài khác cùng chuyên mục
- Lý thuyết Hình lăng trụ đứng, hình chóp đều, thể tích của một số hình khối - Toán 11 Cánh diều
- Lý thuyết Khoảng cách - Toán 11 Cánh diều
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Cánh diều
- Lý thuyết Góc giữa đường thẳng và mặt phẳng, góc nhị diện - Toán 11 Cánh diều
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Cánh diều
- Lý thuyết Hình lăng trụ đứng, hình chóp đều, thể tích của một số hình khối - Toán 11 Cánh diều
- Lý thuyết Khoảng cách - Toán 11 Cánh diều
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Cánh diều
- Lý thuyết Góc giữa đường thẳng và mặt phẳng, góc nhị diện - Toán 11 Cánh diều
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Cánh diều