Bài 14 trang 56 SGK Toán 11 tập 2 - Cánh Diều


Cho ba số thực dương a, b, c khác 1 và đồ thị của ba hàm số lôgarit (y = {log _a}x;,y = {log _b}x;,y = {log _c}x) được cho bởi Hình 15.

Đề bài

Cho ba số thực dương a, b, c khác 1 và đồ thị của ba hàm số lôgarit \(y = {\log _a}x;\,y = {\log _b}x;\,y = {\log _c}x\) được cho bởi Hình 15. Kết luận nào sau đây là đúng với ba số a, b, c?

A. c < a < b

B. c < b < a

C. a < b < c

D. b < c < a

Phương pháp giải - Xem chi tiết

Dựa vào các hệ số và tính đồng biến, nghịch biến của hàm số lôgarit để suy ra

Lời giải chi tiết

-         Do \(y = {\log _a}x\) đồng biến => a lớn nhất => Loại A, C

-         Do \({\log _b}x > {\log _c}x\) theo đồ thị. Mà \(y = {\log _b}x;\,y = {\log _c}x\) nghịch biến nê b < c => Chọn D


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí