Giải toán 11, giải bài tập toán lớp 11 đầy đủ đại số và giải tích, hình học
                        
                                                        Bài 3. Nhị thức Niu - Tơn
                                                    Bài 1 trang 57 SGK Đại số và Giải tích 11>
Viết khai triển theo công thức nhị thức Niu - Tơn:
Video hướng dẫn giải
Viết khai triển theo công thức nhị thức Niu - Tơn:
LG a
\({\left( {a{\rm{ }} + {\rm{ }}2b} \right)^5}\)
Phương pháp giải:
Sử dụng công thức khai triển nhị thức Newton:
\(\begin{array}{l}
{\left( {a + b} \right)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + ...\\
... + C_n^k{a^{n - k}}{b^k} + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}
\end{array}\)
Trong trường hợp số mũ \(n\) khá nhỏ (chẳng hạn trong các câu a) và b) trên đây) thì ta có thể sử dụng tam giác Pascal để tính nhanh các hệ số của khai triển.
Lời giải chi tiết:
Theo dòng 5 của tam giác Pascal, ta có:
\({(a + 2b)^5} = {a^5} + 5{a^4}.2b + 10{a^3}.{(2b)^2} + 10{a^2}{(2b)^3}\)
\(+ 5a.{(2b)^4} + {(2b)^5}\)\(={a^5} + 10{a^4}b + 40{a^3}{b^2} + 80{a^2}{b^3} + 80a{b^4} + 32{b^5}\)
\(\begin{array}{l}
C2:{\left( {a + 2b} \right)^5}  \\
= C_5^0{a^5} + C_5^1{a^4}{\left( {2b} \right)^1} + C_5^2{a^3}{\left( {2b} \right)^2}\\
+ C_5^3{a^2}{\left( {2b} \right)^3} + C_5^4{a^1}{\left( {2b} \right)^4} + C_5^5{\left( {2b} \right)^5}\\
= {a^5} + 10{a^4}b + 40{a^3}{b^2} + 80{a^2}{b^3} + 80a{b^4} + 32{b^5}
\end{array}\)
LG b
\({\left( {a{\rm{ }} - {\rm{ }}\sqrt 2 } \right)^6}\)
Lời giải chi tiết:
Theo dòng 6 của tam giác Pascal, ta có:
\({\left( {a - \sqrt 2 } \right)^6} = {a^6} + 6{a^5}\left( { - \sqrt 2 } \right) + 15{a^4}{\left( { - \sqrt 2 } \right)^2} \)
\(+ 20{a^3}{\left( { - \sqrt 2 } \right)^3} + 15{a^{^2}}{\left( { - \sqrt 2 } \right)^4} + 6a{\left( { - \sqrt 2 } \right)^5}\)
\(+ {\left( { - \sqrt 2 } \right)^6}\)\(={a^6} - 6\sqrt 2 {a^5} + 30{a^4}- 40\sqrt 2 {a^3}\)
\(+ 60{a^2} - 24\sqrt 2 a + 8\)
\(\begin{array}{l}
C2:\,\,{\left( {a - \sqrt 2 } \right)^6} \\
= C_6^0{a^6} + C_6^1{a^5}{\left( { - \sqrt 2 } \right)^1} + C_6^2{a^4}{\left( { - \sqrt 2 } \right)^2}\\ \;\;\;\;+ C_6^3{a^3}{\left( { - \sqrt 2 } \right)^3}+ C_6^4{a^2}{\left( { - \sqrt 2 } \right)^4} \\\;\;\;\;+ C_6^5{a^1}{\left( { - \sqrt 2 } \right)^5} + C_6^6{\left( { - \sqrt 2 } \right)^6}\\
= {a^6} - 6\sqrt 2 {a^5} + 30{a^4} - 40\sqrt 2 {a^3} + 60{a^2}\\\;\;\;\; - 24\sqrt 2 a + 8
\end{array}\)
LG c
\(\displaystyle {\left( {x - {1 \over x}} \right)^{13}}\)
Lời giải chi tiết:
Ta có:
\(\begin{array}{l}
{\left( {x - \dfrac{1}{x}} \right)^{13}}\\
 = C_{13}^0{x^{13}} + C_{13}^1{x^{12}}.\left( { - \dfrac{1}{x}} \right) + C_{13}^2{x^{11}}.{\left( { - \dfrac{1}{x}} \right)^2}\\
 + C_{13}^3{x^{10}}.{\left( { - \dfrac{1}{x}} \right)^3} + C_{13}^4{x^9}.{\left( { - \dfrac{1}{x}} \right)^4}\\
 + C_{13}^5{x^8}.{\left( { - \dfrac{1}{x}} \right)^5} + C_{13}^6{x^7}.{\left( { - \dfrac{1}{x}} \right)^6}\\
 + C_{13}^7{x^6}.{\left( { - \dfrac{1}{x}} \right)^7} + C_{13}^8{x^5}.{\left( { - \dfrac{1}{x}} \right)^8}\\
 + C_{13}^9{x^4}.{\left( { - \dfrac{1}{x}} \right)^9} + C_{13}^{10}{x^3}.{\left( { - \dfrac{1}{x}} \right)^{10}}\\
 + C_{13}^{11}{x^2}.{\left( { - \dfrac{1}{x}} \right)^{11}} + C_{13}^{12}x.{\left( { - \dfrac{1}{x}} \right)^{12}} + C_{13}^{13}.{\left( { - \dfrac{1}{x}} \right)^{13}}\\
 = C_{13}^0{x^{13}} + C_{13}^1{x^{12}}.\dfrac{{{{\left( { - 1} \right)}^1}}}{x} + C_{13}^2{x^{11}}.\dfrac{{{{\left( { - 1} \right)}^2}}}{{{x^2}}}\\
 + C_{13}^3{x^{10}}.\dfrac{{{{\left( { - 1} \right)}^3}}}{{{x^3}}} + C_{13}^4{x^9}.\dfrac{{{{\left( { - 1} \right)}^4}}}{{{x^4}}}\\
 + C_{13}^5{x^8}.\dfrac{{{{\left( { - 1} \right)}^5}}}{{{x^5}}} + C_{13}^6{x^7}.\dfrac{{{{\left( { - 1} \right)}^6}}}{{{x^6}}}\\
 + C_{13}^7{x^6}.\dfrac{{{{\left( { - 1} \right)}^7}}}{{{x^7}}} + C_{13}^8{x^5}.\dfrac{{{{\left( { - 1} \right)}^8}}}{{{x^8}}}\\
 + C_{13}^9{x^4}.\dfrac{{{{\left( { - 1} \right)}^9}}}{{{x^9}}} + C_{13}^{10}{x^3}.\dfrac{{{{\left( { - 1} \right)}^{10}}}}{{{x^{10}}}}\\
 + C_{13}^{11}{x^2}.\dfrac{{{{\left( { - 1} \right)}^{11}}}}{{{x^{11}}}} + C_{13}^{12}x.\dfrac{{{{\left( { - 1} \right)}^{12}}}}{{{x^{12}}}} + C_{13}^{13}.\dfrac{{{{\left( { - 1} \right)}^{13}}}}{{{x^{13}}}}\\
 = C_{13}^0{x^{13}} - C_{13}^1{x^{11}} + C_{13}^2{x^9} - C_{13}^3{x^7} + C_{13}^4{x^5}\\
 - C_{13}^5{x^3} + C_{13}^6x - C_{13}^7.\dfrac{1}{x} + C_{13}^8.\dfrac{1}{{{x^3}}} - C_{13}^9.\dfrac{1}{{{x^5}}}\\
 + C_{13}^{10}.\dfrac{1}{{{x^7}}} - C_{13}^{11}.\dfrac{1}{{{x^9}}} + C_{13}^{12}.\dfrac{1}{{{x^{11}}}} - C_{13}^{13}.\dfrac{1}{{{x^{13}}}}
\end{array}\)
Loigiaihay.com
                
                                    
                                    
        



